Second Moment Estimation

Erik Agrell

For a given $n \times m$ generator matrix \boldsymbol{B} with linearly independent rows, a lattice \mathcal{L} consists of the points $\boldsymbol{u} \boldsymbol{B}$ for all $\boldsymbol{u} \in \mathbb{Z}^{n}$. By definition, the all-zero vector $\mathbf{0}$ belongs to any lattice. The inner products of all basis vectors with each other are collected in the symmetric, positive definite Gram matrix $\boldsymbol{A}=\boldsymbol{B} \boldsymbol{B}^{\mathrm{T}}$. The set of vectors in this subspace that are closer to $\mathbf{0}$ than to any other point in \mathcal{L} is the Voronoi region Ω of the lattice. The normalized second moment (NSM) [1], [2, pp. 34, 56-62] is

$$
\begin{equation*}
G=\frac{1}{n V^{1+2 / n}} \int_{\Omega}\|\boldsymbol{x}\|^{2} \mathrm{~d} \boldsymbol{x} \tag{1}
\end{equation*}
$$

where $V=(\operatorname{det} \boldsymbol{A})^{1 / 2}$ is the n-volume of Ω.
An elegant method to generate random vectors uniformly in the Voronoi region Ω of a given lattice was proposed in [3] for the purpose of NSM estimation. Let \boldsymbol{z} be a random vector drawn uniformly from the unit n-cube $[0,1)^{n}$ and let, for a given generator matrix \boldsymbol{B},

$$
\begin{equation*}
\hat{\boldsymbol{u}}=\underset{\boldsymbol{u} \in \mathbb{Z}^{n}}{\arg \min }\|(\boldsymbol{z}-\boldsymbol{u}) \boldsymbol{B}\|^{2} \tag{2}
\end{equation*}
$$

Now $\hat{\boldsymbol{u}} \boldsymbol{B}$ is the lattice point closest to $\boldsymbol{z} \boldsymbol{B}$ (which is normally not a lattice point). Therefore, $\boldsymbol{e}=(\boldsymbol{z}-\hat{\boldsymbol{u}}) \boldsymbol{B}$ is uniformly distributed in Ω. To calculate (2) requires solving the closest point problem for a given lattice. Algorithms for this purpose are available for classical, well-structured lattices [3], [4] as well as arbitrary lattices [5], [6].

Using these definitions of $\boldsymbol{z}, \hat{\boldsymbol{u}}$, and \boldsymbol{e}, the NSM in (1) can be written as

$$
\begin{equation*}
G=\mathbb{E}_{\boldsymbol{z}}[g(\boldsymbol{B}, \boldsymbol{z})], \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\boldsymbol{B}, \boldsymbol{z})=\frac{1}{n} V^{-2 / n}\|\boldsymbol{e}\|^{2} . \tag{4}
\end{equation*}
$$

Here V is a function of \boldsymbol{B} and \boldsymbol{e} is a function of both \boldsymbol{B} and z.

If $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{T}$ denote T independent realizations of \boldsymbol{z}, then an unbiased estimate of G follows immediately from (3) as

$$
\begin{equation*}
\hat{G}=\frac{1}{T} \sum_{t=1}^{T} g\left(\boldsymbol{B}, \boldsymbol{z}_{t}\right) \tag{5}
\end{equation*}
$$

To quantify the estimation accuracy, the variance of \hat{G} can be estimated as [7, Sec. IV]

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{1}{T-1}\left(\frac{1}{T} \sum_{t=1}^{T} g^{2}\left(\boldsymbol{B}, \boldsymbol{z}_{t}\right)-\hat{G}^{2}\right) \tag{6}
\end{equation*}
$$

which is much more accurate than the "jackknife" estimator recommended in earlier literature.

This text was extracted from https://arxiv.org/abs/2401.01799 in Jan. 2024.

It is easily verified that (5) remains unchanged if the lattice, represented by \boldsymbol{B}, is rescaled. However, previous descriptions of the same NSM estimation method are valid only for lattices with $V=1$. This is because of an unfortunate error in the original publication [3], where the right-hand sides of [3, Eqs. (2), (4)] are missing a factor corresponding to the volume of the Voronoi region (here denoted by V). This error appears to have propagated to [8, Eqs. (73)-(74)] and [7, Eqs. (12)(15)].

REFERENCES

[1] A. Gersho, "Asymptotically optimal block quantization," IEEE Trans. Inf. Theory, vol. IT-25, no. 4, pp. 373-380, July 1979. [Online]. Available: https://doi.org/10.1109/TIT.1979.1056067
[2] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed. New York, NY: Springer, 1999. [Online]. Available: https://doi.org/10.1007/978-1-4757-6568-7
[3] -, "On the Voronoi regions of certain lattices," SIAM J. Alg. Disc. Meth., vol. 5, no. 3, pp. 294-305, Sept. 1984. [Online]. Available: https://doi.org/10.1137/0605031
[4] ——, "Fast quantizing and decoding algorithms for lattice quantizers and codes," IEEE Trans. Inf. Theory, vol. IT-28, no. 2, pp. 227-232, Mar. 1982. [Online]. Available: https://doi.org/10.1109/TIT.1982.1056484
[5] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, "Closest point search in lattices," IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201-2214, Aug. 2002. [Online]. Available: https://doi.org/10.1109/TIT.2002.800499
[6] A. Ghasemmehdi and E. Agrell, "Faster recursions in sphere decoding," IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3530-3536, June 2011. [Online]. Available: https://doi.org/10.1109/TIT.2011.2143830
[7] D. Pook-Kolb, E. Agrell, and B. Allen, "The Voronoi region of the Barnes-Wall lattice Λ_{16}," J. Sel. Areas Inf. Theory, vol. 4, pp. 16-23, 2023. [Online]. Available: https://doi.org/10.1109/JSAIT.2023.3276897
[8] S. Lyu, Z. Wang, C. Ling, and H. Chen, "Better lattice quantizers constructed from complex integers," IEEE Trans. Commun., vol. 70, no. 12, pp. 7932-7940, Dec. 2022. [Online]. Available: https: //doi.org/10.1109/TCOMM.2022.3215685

