Sphere packings of dimension 2
Introduction
Sphere packings in two dimensions (2d), i.e., circle packings, are well studied, due to their usage in coherent modulation. The two dimensions represent the in-phase and quadrature (I/Q) components.
The best known 2d packings are subsets of the hexagonal lattice (honeycomb) [Gilbert52, p. 520], [Simon73], [Foschini74]. It was shown in [Foschini74] that a circular subset of the hexagonal lattice is optimal at asymptotically high M, and it was conjectured in [Graham90] that for M ≠ 4, every optimal 2d packing is a subset of the hexagonal lattice, possibly translated. All best known 2d packings comply with this conjecture. Even for M = 4, a translated subset of the hexagonal lattice is optimal, but in this case, there exist also other optimal packings.
Numerical algorithms to design sphere packings were given in [Foschini74], [Graham90]. The best found normalized second moments were tabulated in [Graham90] for all sizes M ≤ 100 and selected larger sizes. The packings were reproduced using an improved algorithm in [Chow95], where it was proven that the algorithm finds the optimal subset of the hexagonal lattice. Hence, if the conjecture in [Graham90] is true, these are optimal packings. Packings designed using the algorithm of [Chow95] are named c2_*.txt in this database.
The database also contains many suboptimal packings which have been studied in the past. Such packings include quadrature amplitude modulation (QAM) and phase shift keying (PSK) constellations, which form the most popular modulation formats in coherent digital communications, and various special packings from other sources.
The most power-efficient 2d packing, in the sense of maximizing γ, is the equilateral triangle (M = 3). It is the only 2d packing with a positive γ. The highest gain for any 2d packing in the database is G = 0.815 dB and occurs for M = 253, but it would not be hard to design a constellation with marginally higher gains by intersecting the hexagonal lattice with an even large circle. As M → ∞, the gain asymptotically tends to G → 10log10(2π/(3√3)) = 0.825 dB, which equals the gain of the hexagonal lattice over the cubic lattice [Calderbank87, Sec. IV], [Conway99, pp. 7, 73–74, 110].
The 2d packings in the database are, in most cases, rotated and scaled so that the first coordinate is an integer and the second coordinate is a rational number times √3.
Database
File | N | M | d | E | En | κ | Lat | β | Eb | CFM [dB] | γ [dB] | G [dB] | Comment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BPSK2_2 | 2 | 2 | 2 | 1 | 0.25 | 1 | Y | 1 | 1 | 6.0206 | 0 | -1.76091 | |
PSK2_3 | 2 | 3 | 1.73205 | 1 | 0.333333 | 1 | Y | 1.58496 | 0.63093 | 4.77121 | 0.750803 | 0 | An equilateral triangle, or a 2d simplex [Gilbert52], [Cahn59], [Pierce80], [Ekanayake82]. |
tri2_4 | 2 | 4 | 1 | 0.75 | 0.75 | 1.33333 | Y | 2 | 0.375 | 1.24939 | -1.76091 | -1.76091 | An equilateral triangle with a central point [Thomas74]. |
QPSK2_4 | 2 | 4 | 1.41421 | 1 | 0.5 | 1 | Y | 2 | 0.5 | 3.0103 | 0 | 0 | A square. Quadrature phase shift keying (QPSK), possibly the most common coherent modulation format. Used in the Bell 201 modem at 2.4 kbit/s about 1962 and later standardized in V.26 [Forney84], [Hanzo04, Sec. 8.1]. |
QAM2_4 | 2 | 4 | 2 | 2 | 0.5 | 1 | Y | 2 | 1 | 3.0103 | 0 | 0 | Another square [Gilbert52], [Campopiano62], equivalent to QPSK2_4 by rotation. |
doublesimplex2_4 | 2 | 4 | 2 | 2 | 0.5 | 1.25 | Y | 2 | 1 | 3.0103 | 0 | 0 | Two equilateral triangles that share an edge. Has the same En as QPSK. Every rhombic packing with a vertex angle between 60° and 120° is equally good [Foschini74], [Forney84], [Graham90]. Described as a Voronoi constellation in [Forney89b]. |
PSK2_5 | 2 | 5 | 1.17557 | 1 | 0.723607 | 1 | N | 2.32193 | 0.430677 | 1.40497 | -0.957139 | -0.355939 | A pentagon [Karlsson10b]. |
c2_5 | 2 | 5 | 2 | 2.72 | 0.68 | 1.32526 | Y | 2.32193 | 1.17144 | 1.67491 | -0.687201 | -0.0860017 | [Gilbert52], [Graham90], [Karlsson10b] |
PSK2_6 | 2 | 6 | 1 | 1 | 1 | 1 | Y | 2.58496 | 0.386853 | 0 | -1.89606 | -0.791812 | A hexagon. |
c2_6 | 2 | 6 | 6 | 29 | 0.805556 | 1.23781 | Y | 2.58496 | 11.2187 | 0.939045 | -0.957012 | 0.147233 | [Gilbert52], [Karlsson10b] |
PSK2_7 | 2 | 7 | 0.867767 | 1 | 1.32799 | 1 | N | 2.80735 | 0.356207 | -1.23193 | -2.76956 | -1.23193 | A heptagon. |
c2_7 | 2 | 7 | 2 | 3.42857 | 0.857143 | 1.16667 | Y | 2.80735 | 1.22128 | 0.669468 | -0.868159 | 0.669468 | A hexagon with a central point [Gilbert52], [Foschini74], [Graham90], [Karlsson10b]. The “kissing” packing, i.e., a central circle surrounded by the maximum number of touching circles [Agrell09]. |
PSK2_8 | 2 | 8 | 0.765367 | 1 | 1.70711 | 1 | N | 3 | 0.333333 | -2.32261 | -3.57199 | -1.65314 | An octagon. Used in the Milgo 4400/48 modem at 4.8 kbit/s around 1967 and later standardized in V.27 [Forney84], [Hanzo04, Sec. 8.1]. |
doubleQPSK2_8 | 2 | 8 | 2 | 6.82843 | 1.70711 | 1.5 | N | 3 | 2.27614 | -2.32261 | -3.57199 | -1.65314 | [Proakis01, Sec. 5.2.9]. The same performance as PSK. |
square2_8 | 2 | 8 | 1 | 1.5 | 1.5 | 1.11111 | Y | 3 | 0.5 | -1.76091 | -3.0103 | -1.09144 | [Foschini74], [Thomas74], [Proakis01, Sec. 5.2.9] |
rectangle2_8 | 2 | 8 | 2 | 6 | 1.5 | 1.44444 | Y | 3 | 2 | -1.76091 | -3.0103 | -1.09144 | [Calderbank87], [Proakis01, Sec. 5.2.9] |
v29modem2_8 | 2 | 8 | 2 | 5.5 | 1.375 | 1.40496 | N | 3 | 1.83333 | -1.38303 | -2.63241 | -0.713559 | [Campopiano62]. In the 7.2 kbit/s mode of the V.29 modem standard [Hanzo04, Sec. 8.3]. Similar to star2_8. |
DSQ2_8 | 2 | 8 | 2.82843 | 10 | 1.25 | 1.32 | Y | 3 | 3.33333 | -0.9691 | -2.21849 | -0.299632 | Called 8AMPM in [Ungerboeck82]. [Forney88], [Agrell11b] Described as a Voronoi constellation in [Forney89b]. |
star2_8 | 2 | 8 | 2 | 4.73205 | 1.18301 | 1.33333 | N | 3 | 1.57735 | -0.729894 | -1.97928 | -0.0604262 | [Foschini74], [Thomas74]. Incorrectly claimed in [Lucky67], [Proakis01, Sec. 5.2.9] to be optimal. Similar to v29modem2_8. |
hepta2_8 | 2 | 8 | 0.867767 | 0.875 | 1.16199 | 1.14286 | N | 3 | 0.291667 | -0.652013 | -1.9014 | 0.0174548 | [Foschini74], [Thomas74] |
modem2_8 | 2 | 8 | 2 | 4.5 | 1.125 | 1.33333 | Y | 3 | 1.5 | -0.511525 | -1.76091 | 0.157943 | [Gilbert52], [Foschini74], [Thomas74]. Used in a 4.8 kbit/s Hycom modem [Forney84]. |
c2_8 | 2 | 8 | 2 | 4.3125 | 1.07813 | 1.33522 | Y | 3 | 1.4375 | -0.326691 | -1.57608 | 0.342777 | [Foschini74], [Forney88] |
QAM2_9 | 2 | 9 | 1 | 1.33333 | 1.33333 | 1.25 | Y | 3.16993 | 0.42062 | -1.24939 | -2.2595 | 0 | [Gilbert52] |
c2_9 | 2 | 9 | 6 | 44 | 1.22222 | 1.31405 | Y | 3.16993 | 13.8805 | -0.871502 | -1.88161 | 0.377886 | |
c2_10 | 2 | 10 | 2 | 5.4 | 1.35 | 1.2963 | Y | 3.32193 | 1.62556 | -1.30334 | -2.11004 | 0.457575 | [Gilbert52] |
c2_11 | 2 | 11 | 22 | 724 | 1.49587 | 1.30384 | Y | 3.45943 | 209.283 | -1.74893 | -2.37948 | 0.469555 | |
c2_12 | 2 | 12 | 2 | 6.33333 | 1.58333 | 1.27424 | Y | 3.58496 | 1.76664 | -1.99572 | -2.47148 | 0.636691 | |
c2_13 | 2 | 13 | 26 | 1196 | 1.76923 | 1.32514 | Y | 3.70044 | 323.205 | -2.47784 | -2.81591 | 0.532455 | |
c2_14 | 2 | 14 | 2 | 7.57143 | 1.89286 | 1.31328 | Y | 3.80735 | 1.98863 | -2.77118 | -2.98554 | 0.586743 | |
c2_15 | 2 | 15 | 30 | 1856 | 2.06222 | 1.33329 | Y | 3.90689 | 475.058 | -3.14335 | -3.24564 | 0.536413 | |
PSK2_16 | 2 | 16 | 0.390181 | 1 | 6.56854 | 1 | N | 4 | 0.25 | -8.17469 | -8.17469 | -4.19529 | [Simon73] |
multiPSK2_16 | 2 | 16 | 2 | 14.0547 | 3.51367 | 1.26435 | N | 4 | 3.51367 | -5.45761 | -5.45761 | -1.47821 | [Salz71] |
v29modem2_16 | 2 | 16 | 2 | 13.5 | 3.375 | 1.41838 | N | 4 | 3.375 | -5.28274 | -5.28274 | -1.30334 | In the V.29 9.6 kbit/s modem standard [Hanzo04, Sec. 8.3]. It is more tolerant to phase errors than most of the other 16-point packings. |
honeycomb2_16 | 2 | 16 | 4 | 52 | 3.25 | 1.31953 | Y | 4 | 13 | -5.11883 | -5.11883 | -1.13943 | [Thomas74]. Contains holes where further circles would fit. |
octa2_16 | 2 | 16 | 2 | 12.01 | 3.00249 | 1.18614 | N | 4 | 3.00249 | -4.77482 | -4.77482 | -0.795418 | Two octagons forming a star shape [Simon73]. Incorrectly claimed in [Lucky67] to be optimal. Weaker versions of this packing are shown in [Foschini74], [Thomas74], where the ratio between the two radii is higher. |
dodeca2_16 | 2 | 16 | 2 | 11.6962 | 2.92404 | 1.22908 | N | 4 | 2.92404 | -4.65983 | -4.65983 | -0.68043 | Two polygons with the same center [Thomas74]. |
ennea2_16 | 2 | 16 | 2 | 10.323 | 2.58075 | 1.23538 | N | 4 | 2.58075 | -4.11746 | -4.11746 | -0.138062 | Two polygons with the same center. Adapted from a packing in [Thomas74] by optimizing the two radii. |
penta2_16 | 2 | 16 | 1 | 2.57377 | 2.57377 | 1.28223 | N | 4 | 0.643443 | -4.1057 | -4.1057 | -0.126299 | [Simon73], [Foschini74]. A suboptimal version, where the ratio between the two nonzero radii is higher, is shown in [Thomas74]. |
QAM2_16 | 2 | 16 | 2 | 10 | 2.5 | 1.32 | Y | 4 | 2.5 | -3.9794 | -3.9794 | 0 | [Campopiano62], [Simon73], [Foschini74], [Thomas74]. Used in the Codex 9600C modem at 9.6 kbit/s in 1971 [Forney84]. Later used in V.29 [Forney84], V.32 [Hanzo04, Sec. 8.4], and many other standards. |
cross2_16 | 2 | 16 | 2 | 10 | 2.5 | 1.31 | Y | 4 | 2.5 | -3.9794 | -3.9794 | 0 | [Forney84]. The same performance as QAM. |
t2_16 | 2 | 16 | 2 | 10 | 2.5 | 1.24 | Y | 4 | 2.5 | -3.9794 | -3.9794 | 0 | [Thomas74]. The same performance as QAM. |
tri2_16 | 2 | 16 | 2 | 9.08333 | 2.27083 | 1.37497 | Y | 4 | 2.27083 | -3.56185 | -3.56185 | 0.417547 | This packing, suggested in [Simon73], does not have zero mean and can be improved by translation. |
hex2_16 | 2 | 16 | 1 | 2.25 | 2.25 | 1.33333 | Y | 4 | 0.5625 | -3.52183 | -3.52183 | 0.457575 | Incorrectly claimed in [Simon73] to be optimal. |
compact2_16 | 2 | 16 | 2 | 8.82813 | 2.20703 | 1.33249 | Y | 4 | 2.20703 | -3.43808 | -3.43808 | 0.541315 | [Conway83]. The same constellation as tri2_16, but recentered to zero mean. |
c2_16 | 2 | 16 | 4 | 35 | 2.1875 | 1.31673 | Y | 4 | 8.75 | -3.39948 | -3.39948 | 0.579919 | Conjectured optimal in [Conway83], where it was described as a Voronoi code. A similar constellation, optimized for a slightly different criterion, was shown in [Foschini74]. Also shown in [Forney88], [Forney89b], [Graham90]. |
c2_17 | 2 | 17 | 2 | 9.24567 | 2.31142 | 1.30943 | Y | 4.08746 | 2.26196 | -3.63879 | -3.54485 | 0.620901 | |
c2_18 | 2 | 18 | 18 | 788 | 2.4321 | 1.30091 | Y | 4.16993 | 188.972 | -3.85981 | -3.67913 | 0.663165 | |
c2_19 | 2 | 19 | 2 | 10.1053 | 2.52632 | 1.28646 | Y | 4.24793 | 2.37887 | -4.02488 | -3.76371 | 0.746336 | [Simon73], [Foschini74], [Graham90], [Karlsson10b] |
c2_20 | 2 | 20 | 8 | 174.88 | 2.7325 | 1.33446 | Y | 4.32193 | 40.4634 | -4.3656 | -4.02943 | 0.640422 | |
c2_21 | 2 | 21 | 2 | 11.5646 | 2.89116 | 1.33614 | Y | 4.39232 | 2.63292 | -4.61072 | -4.20438 | 0.618071 | |
greedy2_22 | 2 | 22 | 22 | 1466 | 3.02893 | 1.3312 | Y | 4.45943 | 328.741 | -4.81289 | -4.34069 | 0.627794 | The smallest size for which the “greedy algorithm” does not yield the best known packing [Graham90]. |
c2_22 | 2 | 22 | 2 | 12.0909 | 3.02273 | 1.32517 | Y | 4.45943 | 2.71131 | -4.80399 | -4.33179 | 0.636691 | [Graham90] |
c2_23 | 2 | 23 | 46 | 6668 | 3.15123 | 1.32359 | Y | 4.52356 | 1474.06 | -4.9848 | -4.45059 | 0.657915 | |
c2_24 | 2 | 24 | 24 | 1895 | 3.28993 | 1.32438 | Y | 4.58496 | 413.308 | -5.17187 | -4.57911 | 0.663899 | |
c2_25 | 2 | 25 | 2 | 13.6768 | 3.4192 | 1.3216 | Y | 4.64386 | 2.94514 | -5.33925 | -4.69106 | 0.681355 | |
c2_26 | 2 | 26 | 26 | 2403 | 3.55473 | 1.3212 | Y | 4.70044 | 511.229 | -5.50807 | -4.80729 | 0.689817 | |
c2_27 | 2 | 27 | 2 | 14.6667 | 3.66667 | 1.31405 | Y | 4.75489 | 3.08455 | -5.64271 | -4.89191 | 0.725507 | |
c2_28 | 2 | 28 | 2 | 15.2908 | 3.8227 | 1.32283 | Y | 4.80735 | 3.18071 | -5.82371 | -5.02524 | 0.708418 | |
c2_29 | 2 | 29 | 2 | 15.9144 | 3.9786 | 1.33041 | Y | 4.85798 | 3.27593 | -5.9973 | -5.15334 | 0.692768 | |
c2_30 | 2 | 30 | 2 | 16.4667 | 4.11667 | 1.32939 | Y | 4.90689 | 3.35583 | -6.14546 | -5.25799 | 0.69701 | |
c2_31 | 2 | 31 | 2 | 17.0323 | 4.25806 | 1.32369 | Y | 4.9542 | 3.43795 | -6.29212 | -5.36299 | 0.697578 | [Karlsson10b] |
skewcross2_32 | 2 | 32 | 1 | 9.57356 | 9.57356 | 1.30175 | N | 5 | 1.91471 | -9.81073 | -8.84163 | -2.67863 | This irregular constellation was optimized for use in a certain trellis-coded modulation scheme [Calderbank87]. |
multiPSK2_32 | 2 | 32 | 2 | 36.5072 | 9.1268 | 1.48481 | N | 5 | 7.30144 | -9.60318 | -8.63408 | -2.47108 | [Salz71] |
honeycomb2_32 | 2 | 32 | 2 | 26.5 | 6.625 | 1.33001 | Y | 5 | 5.3 | -8.21186 | -7.24276 | -1.07975 | [Thomas74]. Contains holes where further circles would fit. |
tb2_32 | 2 | 32 | 2 | 21.7763 | 5.44407 | 1.25153 | N | 5 | 4.35526 | -7.35924 | -6.39014 | -0.227132 | [Thomas74] |
circb2_32 | 2 | 32 | 1 | 5.35348 | 5.35348 | 1.2956 | N | 5 | 1.0707 | -7.28636 | -6.31726 | -0.154258 | Adapted from a packing in [Thomas74] by optimizing the radii. |
DSQ2_32 | 2 | 32 | 2.82843 | 42 | 5.25 | 1.38095 | Y | 5 | 8.4 | -7.20159 | -6.23249 | -0.0694886 | Called 32AMPM in [Ungerboeck82] and "square" in [Forney89a]. Described as a Voronoi constellation in [Forney89b]. |
circa2_32 | 2 | 32 | 1 | 5.23537 | 5.23537 | 1.27447 | N | 5 | 1.04707 | -7.18947 | -6.22037 | -0.0573697 | Adapted from a packing in [Thomas74] by optimizing the radii. |
ta2_32 | 2 | 32 | 2 | 20.0011 | 5.00028 | 1.31309 | N | 5 | 4.00023 | -6.98994 | -6.02084 | 0.142159 | [Thomas74] |
cross2_32 | 2 | 32 | 2 | 20 | 5 | 1.31 | Y | 5 | 4 | -6.9897 | -6.0206 | 0.142404 | [Campopiano62], [Thomas74], [Forney84]. In the V.32 9.6 kbit/s modem standard [Hanzo04, Sec. 8.4]. |
tri2_32 | 2 | 32 | 1 | 4.6875 | 4.6875 | 1.28853 | Y | 5 | 0.9375 | -6.70941 | -5.74031 | 0.422692 | [Thomas74] |
cs2_32 | 2 | 32 | 1 | 4.4375 | 4.4375 | 1.34418 | Y | 5 | 0.8875 | -6.47138 | -5.50228 | 0.660721 | This packing, suggested in [Calderbank87], does not have zero mean and can be improved by translation. |
c2_32 | 2 | 32 | 32 | 4503 | 4.39746 | 1.32511 | Y | 5 | 900.6 | -6.43202 | -5.46292 | 0.700085 | [Forney84] |
c2_33 | 2 | 33 | 2 | 18.0826 | 4.52066 | 1.32237 | Y | 5.04439 | 3.5847 | -6.55202 | -5.54453 | 0.717968 | |
c2_34 | 2 | 34 | 34 | 5370 | 4.64533 | 1.32016 | Y | 5.08746 | 1055.54 | -6.67016 | -5.62575 | 0.733462 | |
c2_35 | 2 | 35 | 2 | 19.1118 | 4.77796 | 1.31987 | Y | 5.12928 | 3.72602 | -6.79242 | -5.71246 | 0.740852 | |
c2_36 | 2 | 36 | 12 | 707 | 4.90972 | 1.31919 | Y | 5.16993 | 136.752 | -6.91057 | -5.79633 | 0.748599 | |
c2_37 | 2 | 37 | 2 | 20.1081 | 5.02703 | 1.31547 | Y | 5.20945 | 3.85993 | -7.01311 | -5.86579 | 0.7684 | |
c2_38 | 2 | 38 | 2 | 20.8089 | 5.20222 | 1.32791 | Y | 5.24793 | 3.96516 | -7.16188 | -5.98261 | 0.738621 | |
c2_39 | 2 | 39 | 26 | 3624 | 5.36095 | 1.33298 | Y | 5.2854 | 685.662 | -7.29241 | -6.08223 | 0.723909 | |
c2_40 | 2 | 40 | 2 | 22.0325 | 5.50812 | 1.33052 | Y | 5.32193 | 4.13995 | -7.41004 | -6.16995 | 0.719096 | |
c2_41 | 2 | 41 | 82 | 37952 | 5.64426 | 1.32988 | Y | 5.35755 | 7083.83 | -7.51607 | -6.24701 | 0.723018 | |
c2_42 | 2 | 42 | 2 | 23.0476 | 5.7619 | 1.3258 | Y | 5.39232 | 4.27416 | -7.60566 | -6.30851 | 0.740665 | |
c2_43 | 2 | 43 | 86 | 43696 | 5.90806 | 1.32823 | Y | 5.42626 | 8052.68 | -7.71445 | -6.39004 | 0.736533 | |
c2_44 | 2 | 44 | 2 | 24.1591 | 6.03977 | 1.32735 | Y | 5.45943 | 4.4252 | -7.81021 | -6.45933 | 0.742966 | |
c2_45 | 2 | 45 | 90 | 50024 | 6.1758 | 1.32738 | Y | 5.49185 | 9108.77 | -7.90693 | -6.53034 | 0.74608 | |
c2_46 | 2 | 46 | 2 | 25.2571 | 6.31427 | 1.32791 | Y | 5.52356 | 4.57261 | -8.00323 | -6.60164 | 0.74738 | |
c2_47 | 2 | 47 | 94 | 57040 | 6.45541 | 1.32897 | Y | 5.55459 | 10269. | -8.09924 | -6.67332 | 0.746828 | |
c2_48 | 2 | 48 | 2 | 26.3333 | 6.58333 | 1.32719 | Y | 5.58496 | 4.71504 | -8.18446 | -6.73486 | 0.755008 | |
cb2_48 | 2 | 48 | 6 | 237 | 6.58333 | 1.32735 | Y | 5.58496 | 42.4354 | -8.18446 | -6.73486 | 0.755008 | The best known packing with M = 48 is not unique. This packing has the same En as c2_48, although they are geometrically different [Graham90]. |
c2_49 | 2 | 49 | 98 | 64672 | 6.73386 | 1.33019 | Y | 5.61471 | 11518.3 | -8.28264 | -6.80997 | 0.748258 | |
c2_50 | 2 | 50 | 2 | 27.4832 | 6.8708 | 1.33023 | Y | 5.64386 | 4.86958 | -8.37007 | -6.87491 | 0.750375 | |
c2_51 | 2 | 51 | 102 | 73040 | 7.02038 | 1.3326 | Y | 5.67243 | 12876.3 | -8.4636 | -6.94652 | 0.744583 | |
c2_52 | 2 | 52 | 2 | 28.6346 | 7.15865 | 1.33251 | Y | 5.70044 | 5.02323 | -8.54831 | -7.00983 | 0.745876 | |
c2_53 | 2 | 53 | 106 | 82060 | 7.30331 | 1.33082 | Y | 5.72792 | 14326.3 | -8.6352 | -7.07583 | 0.743323 | |
c2_54 | 2 | 54 | 54 | 21641 | 7.42147 | 1.32724 | Y | 5.75489 | 3760.46 | -8.7049 | -7.12513 | 0.756348 | |
c2_55 | 2 | 55 | 2 | 30.1091 | 7.52727 | 1.32273 | Y | 5.78136 | 5.20796 | -8.76638 | -7.16668 | 0.776049 | [Karlsson10b] |
c2_56 | 2 | 56 | 14 | 1504 | 7.67347 | 1.32488 | Y | 5.80735 | 258.982 | -8.84992 | -7.23073 | 0.772197 | |
c2_57 | 2 | 57 | 2 | 31.2392 | 7.80979 | 1.32512 | Y | 5.83289 | 5.35569 | -8.92639 | -7.28815 | 0.773976 | |
c2_58 | 2 | 58 | 58 | 26732 | 7.94649 | 1.32545 | Y | 5.85798 | 4563.35 | -9.00175 | -7.34487 | 0.775481 | |
c2_59 | 2 | 59 | 2 | 32.3516 | 8.08791 | 1.32657 | Y | 5.88264 | 5.4995 | -9.07836 | -7.40324 | 0.774407 | |
c2_60 | 2 | 60 | 30 | 7406 | 8.22889 | 1.32752 | Y | 5.90689 | 1253.79 | -9.15341 | -7.46042 | 0.773596 | |
c2_61 | 2 | 61 | 2 | 33.4426 | 8.36066 | 1.32694 | Y | 5.93074 | 5.63886 | -9.2224 | -7.51192 | 0.777597 | |
c2_62 | 2 | 62 | 62 | 32779 | 8.52732 | 1.33228 | Y | 5.9542 | 5505.19 | -9.30812 | -7.58049 | 0.763663 | |
c2_63 | 2 | 63 | 2 | 34.7181 | 8.67952 | 1.33422 | Y | 5.97728 | 5.80834 | -9.38496 | -7.64052 | 0.757449 | |
honeycomb2_64 | 2 | 64 | 2 | 53.5 | 13.375 | 1.35138 | Y | 6 | 8.91667 | -11.2629 | -9.50203 | -1.05104 | [Thomas74] Contains holes where further circles would fit. |
circa2_64 | 2 | 64 | 2 | 45.6353 | 11.4088 | 1.33321 | N | 6 | 7.60588 | -10.5724 | -8.8115 | -0.360516 | Adapted from a packing in [Thomas74] by optimizing the radii. |
circb2_64 | 2 | 64 | 2 | 43.216 | 10.804 | 1.29607 | N | 6 | 7.20266 | -10.3358 | -8.57493 | -0.123951 | Adapted from a packing in [Thomas74] by optimizing the radii. |
QAM2_64 | 2 | 64 | 2 | 42 | 10.5 | 1.38095 | Y | 6 | 7 | -10.2119 | -8.45098 | 0 | [Campopiano62], [Thomas74]. Used in the Paradyne MP14400 modem at 14.4 kbit/s in 1980 [Forney84]. |
cross2_64 | 2 | 64 | 2 | 41 | 10.25 | 1.34265 | Y | 6 | 6.83333 | -10.1072 | -8.34633 | 0.104654 | [Forney84], [Forney88] |
hex2_64 | 2 | 64 | 2 | 41 | 10.25 | 1.34206 | Y | 6 | 6.83333 | -10.1072 | -8.34633 | 0.104654 | [Calderbank87] |
circular2_64 | 2 | 64 | 2 | 40.9375 | 10.2344 | 1.34008 | N | 6 | 6.82292 | -10.1006 | -8.3397 | 0.11128 | Used in the Paradyne 14.4 kbit/s modem [Forney84]. (Called "circular" in [Forney84].) |
voronoi2_64 | 2 | 64 | 2 | 35.4375 | 8.85938 | 1.33941 | Y | 6 | 5.90625 | -9.47403 | -7.71312 | 0.737862 | This packing was presented in [Forney89b] as a Voronoi constellation, which enables low-complexity implementation. Combined with translated replicas of itself, it tiles the plane. |
tri2_64 | 2 | 64 | 2 | 36.625 | 9.15625 | 1.32363 | Y | 6 | 6.10417 | -9.61718 | -7.85626 | 0.594717 | [Thomas74] |
modem2_64 | 2 | 64 | 2 | 35.4375 | 8.85938 | 1.34196 | Y | 6 | 5.90625 | -9.47403 | -7.71312 | 0.737862 | Used in the Codex/ESE SP14.4 modem [Forney84]. |
c2_64 | 2 | 64 | 2 | 35.25 | 8.8125 | 1.33152 | Y | 6 | 5.875 | -9.45099 | -7.69008 | 0.760902 | [Forney84] |
c2_65 | 2 | 65 | 26 | 6052.48 | 8.95337 | 1.33202 | Y | 6.02237 | 1005. | -9.51987 | -7.74279 | 0.760421 | |
c2_66 | 2 | 66 | 2 | 36.3499 | 9.08747 | 1.33135 | Y | 6.04439 | 6.01381 | -9.58443 | -7.7915 | 0.763193 | |
c2_67 | 2 | 67 | 2 | 36.8572 | 9.2143 | 1.32974 | Y | 6.06609 | 6.07594 | -9.64462 | -7.83614 | 0.769303 | |
c2_68 | 2 | 68 | 34 | 10802 | 9.34429 | 1.32867 | Y | 6.08746 | 1774.47 | -9.70546 | -7.8817 | 0.773772 | |
c2_69 | 2 | 69 | 2 | 37.8551 | 9.46377 | 1.32652 | Y | 6.10852 | 6.19709 | -9.76064 | -7.92188 | 0.782936 | |
c2_70 | 2 | 70 | 28 | 7538.08 | 9.6149 | 1.32878 | Y | 6.12928 | 1229.85 | -9.82945 | -7.97595 | 0.777532 | |
c2_71 | 2 | 71 | 2 | 39.028 | 9.75699 | 1.3295 | Y | 6.14975 | 6.34627 | -9.89316 | -8.02519 | 0.776308 | |
c2_72 | 2 | 72 | 8 | 633.667 | 9.90104 | 1.33052 | Y | 6.16993 | 102.702 | -9.95681 | -8.07461 | 0.774262 | |
c2_73 | 2 | 73 | 146 | 214020 | 10.0403 | 1.3307 | Y | 6.18982 | 34576.1 | -10.0175 | -8.1213 | 0.774326 | |
c2_74 | 2 | 74 | 74 | 55747 | 10.1802 | 1.33096 | Y | 6.20945 | 8977.76 | -10.0776 | -8.16765 | 0.774135 | |
c2_75 | 2 | 75 | 50 | 25782.7 | 10.3131 | 1.33041 | Y | 6.22882 | 4139.25 | -10.1339 | -8.21042 | 0.776926 | |
c2_76 | 2 | 76 | 2 | 41.7895 | 10.4474 | 1.33014 | Y | 6.24793 | 6.68853 | -10.1901 | -8.25331 | 0.779031 | |
c2_77 | 2 | 77 | 154 | 251468 | 10.6033 | 1.33266 | Y | 6.26679 | 40127.1 | -10.2544 | -8.30456 | 0.772211 | |
c2_78 | 2 | 78 | 26 | 7266.33 | 10.749 | 1.33356 | Y | 6.2854 | 1156.06 | -10.3137 | -8.35096 | 0.769709 | |
c2_79 | 2 | 79 | 158 | 271728 | 10.8848 | 1.33232 | Y | 6.30378 | 43105.6 | -10.3682 | -8.39279 | 0.771231 | |
c2_80 | 2 | 80 | 20 | 4406.81 | 11.017 | 1.33162 | Y | 6.32193 | 697.068 | -10.4206 | -8.43275 | 0.774113 | |
cs2_81 | 2 | 81 | 2 | 51.4815 | 12.8704 | 1.33098 | Y | 6.33985 | 8.1203 | -11.0959 | -9.09572 | 0.153477 | This packing, suggested in [Calderbank87], does not have zero mean and can be improved by translation. |
c2_81 | 2 | 81 | 2 | 44.5926 | 11.1481 | 1.33081 | Y | 6.33985 | 7.0337 | -10.472 | -8.47184 | 0.77736 | |
c2_82 | 2 | 82 | 82 | 75858 | 11.2817 | 1.33023 | Y | 6.35755 | 11932. | -10.5237 | -8.51144 | 0.779601 | |
c2_83 | 2 | 83 | 166 | 314412 | 11.4099 | 1.32911 | Y | 6.37504 | 49319.2 | -10.5728 | -8.5486 | 0.783797 | |
c2_84 | 2 | 84 | 28 | 9041.67 | 11.5327 | 1.32751 | Y | 6.39232 | 1414.46 | -10.6193 | -8.58334 | 0.789944 | |
c2_85 | 2 | 85 | 2 | 46.5882 | 11.6471 | 1.32534 | Y | 6.40939 | 7.26875 | -10.6622 | -8.61459 | 0.799118 | |
c2_86 | 2 | 86 | 86 | 87265 | 11.7989 | 1.32736 | Y | 6.42626 | 13579.4 | -10.7184 | -8.65945 | 0.794245 | |
c2_87 | 2 | 87 | 2 | 47.7765 | 11.9441 | 1.3284 | Y | 6.44294 | 7.41532 | -10.7715 | -8.7013 | 0.791933 | |
c2_88 | 2 | 88 | 44 | 23405 | 12.0894 | 1.32943 | Y | 6.45943 | 3623.38 | -10.824 | -8.74269 | 0.789647 | |
c2_89 | 2 | 89 | 2 | 48.9509 | 12.2377 | 1.33084 | Y | 6.47573 | 7.55913 | -10.877 | -8.78472 | 0.786308 | |
c2_90 | 2 | 90 | 18 | 4013 | 12.3858 | 1.33216 | Y | 6.49185 | 618.159 | -10.9292 | -8.82615 | 0.783146 | |
c2_91 | 2 | 91 | 2 | 50.1099 | 12.5275 | 1.33265 | Y | 6.50779 | 7.69998 | -10.9786 | -8.8649 | 0.782278 | |
c2_92 | 2 | 92 | 92 | 107259 | 12.6724 | 1.33251 | Y | 6.52356 | 16441.8 | -11.0286 | -8.90433 | 0.780321 | |
c2_93 | 2 | 93 | 62 | 49234.7 | 12.8082 | 1.33218 | Y | 6.53916 | 7529.2 | -11.0749 | -8.94026 | 0.78149 | |
c2_94 | 2 | 94 | 94 | 114345 | 12.9408 | 1.33162 | Y | 6.55459 | 17445. | -11.1196 | -8.97476 | 0.783702 | |
c2_95 | 2 | 95 | 38 | 18893.3 | 13.084 | 1.33213 | Y | 6.56986 | 2875.75 | -11.1674 | -9.01244 | 0.782364 | |
c2_96 | 2 | 96 | 2 | 52.875 | 13.2188 | 1.33184 | Y | 6.58496 | 8.02966 | -11.2119 | -9.04697 | 0.78382 | |
c2_97 | 2 | 97 | 194 | 502760 | 13.3585 | 1.33205 | Y | 6.59991 | 76176.8 | -11.2576 | -9.08279 | 0.783627 | |
c2_98 | 2 | 98 | 14 | 2644.73 | 13.4935 | 1.3317 | Y | 6.61471 | 399.826 | -11.3013 | -9.11675 | 0.784944 | |
c2_99 | 2 | 99 | 22 | 6594.96 | 13.626 | 1.3312 | Y | 6.62936 | 994.812 | -11.3437 | -9.14956 | 0.787078 | |
c2_100 | 2 | 100 | 2 | 55.0148 | 13.7537 | 1.33028 | Y | 6.64386 | 8.28055 | -11.3842 | -9.18059 | 0.790644 | |
c2_101 | 2 | 101 | 202 | 566572 | 13.8852 | 1.32975 | Y | 6.65821 | 85093.7 | -11.4255 | -9.21255 | 0.792964 | |
c2_102 | 2 | 102 | 2 | 56.0392 | 14.0098 | 1.32869 | Y | 6.67243 | 8.39863 | -11.4643 | -9.24208 | 0.797381 | |
c2_103 | 2 | 103 | 206 | 601124 | 14.1654 | 1.33064 | Y | 6.6865 | 89901.1 | -11.5123 | -9.28091 | 0.792193 | |
c2_104 | 2 | 104 | 2 | 57.2504 | 14.3126 | 1.33154 | Y | 6.70044 | 8.54427 | -11.5572 | -9.31675 | 0.789677 | |
c2_105 | 2 | 105 | 14 | 2832.85 | 14.4533 | 1.33178 | Y | 6.71425 | 421.917 | -11.5997 | -9.35031 | 0.789141 | |
c2_106 | 2 | 106 | 2 | 58.3578 | 14.5894 | 1.33162 | Y | 6.72792 | 8.67397 | -11.6404 | -9.38218 | 0.789993 | |
c2_107 | 2 | 107 | 214 | 674724 | 14.7333 | 1.3322 | Y | 6.74147 | 100086. | -11.683 | -9.41604 | 0.78856 | |
c2_108 | 2 | 108 | 2 | 59.4815 | 14.8704 | 1.33213 | Y | 6.75489 | 8.8057 | -11.7232 | -9.44764 | 0.789107 | |
c2_109 | 2 | 109 | 218 | 713284 | 15.0089 | 1.33221 | Y | 6.76818 | 105388. | -11.7635 | -9.47937 | 0.78923 | |
c2_110 | 2 | 110 | 2 | 60.6 | 15.15 | 1.33256 | Y | 6.78136 | 8.93626 | -11.8041 | -9.51156 | 0.788626 | |
c2_111 | 2 | 111 | 222 | 753728 | 15.2936 | 1.33289 | Y | 6.79442 | 110933. | -11.8451 | -9.54417 | 0.787327 | |
c2_112 | 2 | 112 | 16 | 3950.45 | 15.4314 | 1.3328 | Y | 6.80735 | 580.321 | -11.8841 | -9.57488 | 0.787652 | |
c2_113 | 2 | 113 | 2 | 62.258 | 15.5645 | 1.332 | Y | 6.82018 | 9.12849 | -11.9213 | -9.60399 | 0.789318 | |
c2_114 | 2 | 114 | 114 | 203975 | 15.6952 | 1.33149 | Y | 6.83289 | 29851.9 | -11.9577 | -9.63223 | 0.7916 | |
c2_115 | 2 | 115 | 230 | 837104 | 15.8243 | 1.33086 | Y | 6.84549 | 122285. | -11.9932 | -9.65979 | 0.794299 | |
c2_116 | 2 | 116 | 8 | 1021.42 | 15.9596 | 1.33071 | Y | 6.85798 | 148.938 | -12.0302 | -9.68887 | 0.795233 | |
c2_117 | 2 | 117 | 2 | 64.3726 | 16.0931 | 1.33042 | Y | 6.87036 | 9.3696 | -12.0664 | -9.71721 | 0.796659 | |
c2_118 | 2 | 118 | 118 | 225977 | 16.2293 | 1.33032 | Y | 6.88264 | 32832.9 | -12.103 | -9.74605 | 0.797344 | |
c2_119 | 2 | 119 | 238 | 926764 | 16.3612 | 1.32988 | Y | 6.89482 | 134415. | -12.1382 | -9.77352 | 0.799155 | |
c2_120 | 2 | 120 | 60 | 59362.3 | 16.4895 | 1.3292 | Y | 6.90689 | 8594.64 | -12.1721 | -9.79985 | 0.801879 | |
c2_121 | 2 | 121 | 2 | 66.4463 | 16.6116 | 1.32815 | Y | 6.91886 | 9.60364 | -12.2041 | -9.82436 | 0.806193 | |
c2_122 | 2 | 122 | 122 | 249576 | 16.7681 | 1.32992 | Y | 6.93074 | 36010. | -12.2448 | -9.85764 | 0.80151 | |
c2_123 | 2 | 123 | 2 | 67.6788 | 16.9197 | 1.33113 | Y | 6.94251 | 9.74845 | -12.2839 | -9.88936 | 0.798162 | |
c2_124 | 2 | 124 | 62 | 65621.3 | 17.0711 | 1.3322 | Y | 6.9542 | 9436.21 | -12.3226 | -9.92074 | 0.794927 | |
c2_125 | 2 | 125 | 2 | 68.8622 | 17.2156 | 1.33263 | Y | 6.96578 | 9.88578 | -12.3592 | -9.95011 | 0.793495 | |
c2_126 | 2 | 126 | 126 | 275618 | 17.3607 | 1.33313 | Y | 6.97728 | 39502.2 | -12.3957 | -9.9794 | 0.791923 | |
c2_127 | 2 | 127 | 254 | 1129132 | 17.5016 | 1.33328 | Y | 6.98868 | 161566. | -12.4308 | -10.0074 | 0.79142 | |
fivecircle2_128 | 2 | 128 | 2 | 115.539 | 28.8846 | 1.33698 | N | 7 | 16.5055 | -14.6067 | -12.1763 | -1.35014 | Adapted from a packing in [Thomas74] by optimizing the radii. |
sixcircle2_128 | 2 | 128 | 2 | 85.7217 | 21.4304 | 1.32041 | N | 7 | 12.246 | -13.3103 | -10.8799 | -0.0537841 | Adapted from a packing in [Thomas74] by optimizing the radii. |
DSQ2_128 | 2 | 128 | 2.82843 | 170 | 21.25 | 1.39529 | Y | 7 | 24.2857 | -13.2736 | -10.8432 | -0.0170646 | 128-ary double square (DSQ) packing is used in the 10-gigabit Ethernet standard 10GBASE-T. |
cross2_128 | 2 | 128 | 2 | 82 | 20.5 | 1.34265 | Y | 7 | 11.7143 | -13.1175 | -10.6872 | 0.138986 | [Forney84], [Calderbank87]. In the V.33 14.4 kbit/s modem standard [Hanzo04, Sec. 8.5]. |
b2_128 | 2 | 128 | 2 | 82 | 20.5 | 1.34265 | Y | 7 | 11.7143 | -13.1175 | -10.6872 | 0.138986 | [Campopiano62], [Thomas74]. Has, as pointed out in [Forney84], the same performance as cross2_128, although the constellations are not equivalent. |
tri2_128 | 2 | 128 | 2 | 71.962 | 17.9905 | 1.32928 | N | 7 | 10.2803 | -12.5504 | -10.1201 | 0.706091 | [Thomas74] |
c2_128 | 2 | 128 | 2 | 70.5442 | 17.636 | 1.33265 | Y | 7 | 10.0777 | -12.464 | -10.0336 | 0.792512 | |
c2_129 | 2 | 129 | 258 | 1182920 | 17.7712 | 1.33247 | Y | 7.01123 | 168718. | -12.4972 | -10.0598 | 0.793428 | |
c2_130 | 2 | 130 | 2 | 71.6154 | 17.9038 | 1.33212 | Y | 7.02237 | 10.1982 | -12.5295 | -10.0852 | 0.794921 | |
c2_131 | 2 | 131 | 262 | 1238720 | 18.0456 | 1.33245 | Y | 7.03342 | 176119. | -12.5637 | -10.1126 | 0.794215 | |
c2_132 | 2 | 132 | 22 | 8799.67 | 18.1811 | 1.33232 | Y | 7.04439 | 1249.17 | -12.5962 | -10.1384 | 0.794992 | |
c2_133 | 2 | 133 | 266 | 1296160 | 18.3187 | 1.33232 | Y | 7.05528 | 183715. | -12.629 | -10.1644 | 0.795273 | |
c2_134 | 2 | 134 | 134 | 331356 | 18.4538 | 1.3321 | Y | 7.06609 | 46893.8 | -12.6609 | -10.1897 | 0.796151 | |
c2_135 | 2 | 135 | 2 | 74.348 | 18.587 | 1.33181 | Y | 7.07682 | 10.5059 | -12.6921 | -10.2143 | 0.797443 | |
c2_136 | 2 | 136 | 68 | 86588.3 | 18.7258 | 1.33192 | Y | 7.08746 | 12217.1 | -12.7244 | -10.2401 | 0.797414 | |
c2_137 | 2 | 137 | 274 | 1416196 | 18.8635 | 1.33191 | Y | 7.09803 | 199520. | -12.7562 | -10.2654 | 0.797654 | |
c2_138 | 2 | 138 | 138 | 361829 | 18.9996 | 1.33182 | Y | 7.10852 | 50900.7 | -12.7875 | -10.2903 | 0.798241 | |
c2_139 | 2 | 139 | 2 | 76.5288 | 19.1322 | 1.33148 | Y | 7.11894 | 10.75 | -12.8176 | -10.3141 | 0.799632 | |
c2_140 | 2 | 140 | 70 | 94409 | 19.2671 | 1.33132 | Y | 7.12928 | 13242.4 | -12.8482 | -10.3383 | 0.800462 | |
c2_141 | 2 | 141 | 2 | 77.5887 | 19.3972 | 1.33086 | Y | 7.13955 | 10.8674 | -12.8774 | -10.3613 | 0.802386 | |
c2_142 | 2 | 142 | 2 | 78.1704 | 19.5426 | 1.33145 | Y | 7.14975 | 10.9333 | -12.9098 | -10.3875 | 0.800855 | |
c2_143 | 2 | 143 | 2 | 78.752 | 19.688 | 1.33203 | Y | 7.15987 | 10.9991 | -12.942 | -10.4136 | 0.799354 | |
c2_144 | 2 | 144 | 2 | 79.3189 | 19.8297 | 1.33228 | Y | 7.16993 | 11.0627 | -12.9732 | -10.4386 | 0.798683 | |
c2_145 | 2 | 145 | 290 | 1679736 | 19.9731 | 1.33266 | Y | 7.17991 | 233949. | -13.0045 | -10.4639 | 0.797662 | |
c2_146 | 2 | 146 | 2 | 80.4519 | 20.113 | 1.3328 | Y | 7.18982 | 11.1897 | -13.0348 | -10.4882 | 0.797406 | |
c2_147 | 2 | 147 | 294 | 1751000 | 20.2578 | 1.33328 | Y | 7.19967 | 243206. | -13.0659 | -10.5134 | 0.796101 | |
c2_148 | 2 | 148 | 74 | 111691. | 20.3965 | 1.33323 | Y | 7.20945 | 15492.3 | -13.0956 | -10.5371 | 0.796104 | |
c2_149 | 2 | 149 | 2 | 82.1212 | 20.5303 | 1.33253 | Y | 7.21917 | 11.3754 | -13.124 | -10.5597 | 0.797154 | |
c2_150 | 2 | 150 | 50 | 51645.7 | 20.6583 | 1.33191 | Y | 7.22882 | 7144.41 | -13.1509 | -10.5809 | 0.799411 | |
c2_151 | 2 | 151 | 2 | 83.1258 | 20.7815 | 1.33107 | Y | 7.2384 | 11.484 | -13.1768 | -10.6009 | 0.80264 | |
c2_152 | 2 | 152 | 38 | 30216.8 | 20.9258 | 1.33154 | Y | 7.24793 | 4169.03 | -13.2068 | -10.6253 | 0.801442 | |
c2_153 | 2 | 153 | 306 | 1972412 | 21.0647 | 1.33164 | Y | 7.25739 | 271780. | -13.2355 | -10.6483 | 0.801376 | |
c2_154 | 2 | 154 | 154 | 502802 | 21.201 | 1.33158 | Y | 7.26679 | 69191.8 | -13.2636 | -10.6707 | 0.801846 | |
c2_155 | 2 | 155 | 2 | 85.3349 | 21.3337 | 1.33132 | Y | 7.27612 | 11.7281 | -13.2907 | -10.6923 | 0.803026 | |
c2_156 | 2 | 156 | 24 | 12366.4 | 21.4694 | 1.33124 | Y | 7.2854 | 1697.42 | -13.3182 | -10.7143 | 0.803608 | |
c2_157 | 2 | 157 | 314 | 2129984 | 21.6031 | 1.33105 | Y | 7.29462 | 291994. | -13.3452 | -10.7357 | 0.804563 | |
c2_158 | 2 | 158 | 158 | 542773 | 21.7422 | 1.33118 | Y | 7.30378 | 74314. | -13.373 | -10.7582 | 0.804443 | |
c2_159 | 2 | 159 | 2 | 87.5173 | 21.8793 | 1.33118 | Y | 7.31288 | 11.9675 | -13.4003 | -10.7801 | 0.804721 | |
c2_160 | 2 | 160 | 40 | 35230.3 | 22.0189 | 1.33133 | Y | 7.32193 | 4811.61 | -13.428 | -10.8023 | 0.804501 | |
c2_161 | 2 | 161 | 322 | 2297116 | 22.155 | 1.33126 | Y | 7.33092 | 313346. | -13.4547 | -10.8237 | 0.804975 | |
c2_162 | 2 | 162 | 162 | 584939 | 22.2885 | 1.33104 | Y | 7.33985 | 79693.6 | -13.4808 | -10.8445 | 0.805941 | |
c2_163 | 2 | 163 | 2 | 89.6687 | 22.4172 | 1.33057 | Y | 7.34873 | 12.2019 | -13.5058 | -10.8643 | 0.807828 | |
c2_164 | 2 | 164 | 2 | 90.2855 | 22.5714 | 1.33167 | Y | 7.35755 | 12.2711 | -13.5356 | -10.8888 | 0.804781 | |
c2_165 | 2 | 165 | 110 | 274936 | 22.722 | 1.33247 | Y | 7.36632 | 37323.4 | -13.5645 | -10.9126 | 0.802464 | |
c2_166 | 2 | 166 | 166 | 630273 | 22.8724 | 1.33321 | Y | 7.37504 | 85460.3 | -13.5931 | -10.9361 | 0.800202 | |
c2_167 | 2 | 167 | 334 | 2567836 | 23.0184 | 1.33363 | Y | 7.3837 | 347771. | -13.6207 | -10.9586 | 0.798825 | |
c2_168 | 2 | 168 | 2 | 92.6186 | 23.1547 | 1.33316 | Y | 7.39232 | 12.529 | -13.6464 | -10.9792 | 0.799269 | |
c2_169 | 2 | 169 | 338 | 2660756 | 23.2901 | 1.33299 | Y | 7.40088 | 359519. | -13.6717 | -10.9995 | 0.799864 | |
c2_170 | 2 | 170 | 2 | 93.6854 | 23.4213 | 1.3326 | Y | 7.40939 | 12.6441 | -13.6961 | -11.0189 | 0.801235 | |
c2_171 | 2 | 171 | 342 | 2755160 | 23.5556 | 1.33242 | Y | 7.41785 | 371423. | -13.7209 | -11.0388 | 0.802031 | |
c2_172 | 2 | 172 | 2 | 94.7514 | 23.6878 | 1.33213 | Y | 7.42626 | 12.759 | -13.7453 | -11.0581 | 0.803194 | |
c2_173 | 2 | 173 | 346 | 2852008 | 23.8231 | 1.332 | Y | 7.43463 | 383611. | -13.77 | -11.078 | 0.803787 | |
c2_174 | 2 | 174 | 2 | 95.8161 | 23.954 | 1.33166 | Y | 7.44294 | 12.8734 | -13.7938 | -11.0969 | 0.805164 | |
c2_175 | 2 | 175 | 50 | 60243.6 | 24.0974 | 1.33201 | Y | 7.45121 | 8085.07 | -13.8197 | -11.118 | 0.804271 | |
c2_176 | 2 | 176 | 2 | 96.9489 | 24.2372 | 1.33214 | Y | 7.45943 | 12.9968 | -13.8448 | -11.1384 | 0.804041 | |
c2_177 | 2 | 177 | 354 | 3054944 | 24.3779 | 1.33232 | Y | 7.46761 | 409093. | -13.87 | -11.1588 | 0.803647 | |
c2_178 | 2 | 178 | 178 | 776765 | 24.516 | 1.33234 | Y | 7.47573 | 103905. | -13.8945 | -11.1786 | 0.803724 | |
c2_179 | 2 | 179 | 358 | 3159556 | 24.6524 | 1.33228 | Y | 7.48382 | 422185. | -13.9186 | -11.198 | 0.804087 | |
c2_180 | 2 | 180 | 2 | 99.1611 | 24.7903 | 1.33231 | Y | 7.49185 | 13.2359 | -13.9428 | -11.2175 | 0.804204 | |
c2_181 | 2 | 181 | 362 | 3267164 | 24.9318 | 1.33249 | Y | 7.49985 | 435631. | -13.9675 | -11.2376 | 0.803675 | |
c2_182 | 2 | 182 | 26 | 16945.9 | 25.068 | 1.33243 | Y | 7.50779 | 2257.11 | -13.9912 | -11.2567 | 0.804084 | |
c2_183 | 2 | 183 | 366 | 3376568 | 25.2065 | 1.33249 | Y | 7.5157 | 449269. | -14.0151 | -11.276 | 0.804068 | |
c2_184 | 2 | 184 | 2 | 101.369 | 25.3422 | 1.33239 | Y | 7.52356 | 13.4735 | -14.0384 | -11.2948 | 0.804563 | |
c2_185 | 2 | 185 | 370 | 3488344 | 25.481 | 1.33245 | Y | 7.53138 | 463175. | -14.0622 | -11.314 | 0.804507 | |
c2_186 | 2 | 186 | 2 | 102.462 | 25.6156 | 1.3323 | Y | 7.53916 | 13.5907 | -14.085 | -11.3324 | 0.805161 | |
c2_187 | 2 | 187 | 374 | 3603092 | 25.7592 | 1.33263 | Y | 7.54689 | 477427. | -14.1093 | -11.3522 | 0.804295 | |
c2_188 | 2 | 188 | 2 | 103.6 | 25.9001 | 1.3328 | Y | 7.55459 | 13.7136 | -14.133 | -11.3715 | 0.80389 | |
c2_189 | 2 | 189 | 378 | 3721112 | 26.0429 | 1.33306 | Y | 7.56224 | 492065. | -14.1569 | -11.391 | 0.803175 | |
c2_190 | 2 | 190 | 2 | 104.721 | 26.1802 | 1.33303 | Y | 7.56986 | 13.8339 | -14.1797 | -11.4095 | 0.803377 | |
c2_191 | 2 | 191 | 382 | 3840928 | 26.3214 | 1.33322 | Y | 7.57743 | 506891. | -14.2031 | -11.4285 | 0.802929 | |
c2_192 | 2 | 192 | 2 | 105.833 | 26.4583 | 1.33317 | Y | 7.58496 | 13.953 | -14.2256 | -11.4467 | 0.803196 | |
c2_193 | 2 | 193 | 386 | 3961856 | 26.5904 | 1.33257 | Y | 7.59246 | 521815. | -14.2472 | -11.464 | 0.804259 | |
c2_194 | 2 | 194 | 194 | 1005748 | 26.723 | 1.33233 | Y | 7.59991 | 132337. | -14.2689 | -11.4814 | 0.805203 | |
c2_195 | 2 | 195 | 2 | 107.425 | 26.8563 | 1.33212 | Y | 7.60733 | 14.1213 | -14.2905 | -11.4987 | 0.806038 | |
c2_196 | 2 | 196 | 14 | 5290.02 | 26.9899 | 1.33192 | Y | 7.61471 | 694.711 | -14.312 | -11.5161 | 0.806821 | |
c2_197 | 2 | 197 | 394 | 4210288 | 27.1219 | 1.33165 | Y | 7.62205 | 552382. | -14.3332 | -11.5331 | 0.807855 | |
c2_198 | 2 | 198 | 198 | 1068356 | 27.2512 | 1.33127 | Y | 7.62936 | 140032. | -14.3539 | -11.5496 | 0.809294 | |
c2_199 | 2 | 199 | 2 | 109.508 | 27.3769 | 1.33075 | Y | 7.63662 | 14.3398 | -14.3738 | -11.5654 | 0.811299 | |
c2_200 | 2 | 200 | 80 | 176151. | 27.5236 | 1.33124 | Y | 7.64386 | 23044.8 | -14.397 | -11.5845 | 0.80997 | |
c2_201 | 2 | 201 | 134 | 496772 | 27.6661 | 1.3315 | Y | 7.65105 | 64928.6 | -14.4195 | -11.6029 | 0.809312 | |
c2_202 | 2 | 202 | 202 | 1134621 | 27.8066 | 1.33165 | Y | 7.65821 | 148157. | -14.4415 | -11.6208 | 0.808967 | |
c2_203 | 2 | 203 | 2 | 111.777 | 27.9442 | 1.33166 | Y | 7.66534 | 14.5821 | -14.4629 | -11.6382 | 0.809083 | |
c2_204 | 2 | 204 | 68 | 129862. | 28.0843 | 1.3318 | Y | 7.67243 | 16925.8 | -14.4846 | -11.6559 | 0.808816 | |
c2_205 | 2 | 205 | 82 | 189768 | 28.2225 | 1.33184 | Y | 7.67948 | 24711. | -14.506 | -11.6732 | 0.808836 | |
c2_206 | 2 | 206 | 206 | 1203705 | 28.3652 | 1.33211 | Y | 7.6865 | 156600. | -14.5279 | -11.6912 | 0.80817 | |
c2_207 | 2 | 207 | 2 | 114.024 | 28.506 | 1.33227 | Y | 7.69349 | 14.8208 | -14.5494 | -11.7087 | 0.807799 | |
c2_208 | 2 | 208 | 32 | 29336.6 | 28.649 | 1.33255 | Y | 7.70044 | 3809.73 | -14.5711 | -11.7265 | 0.807094 | |
c2_209 | 2 | 209 | 418 | 5030148 | 28.7891 | 1.33267 | Y | 7.70736 | 652642. | -14.5923 | -11.7438 | 0.806839 | |
c2_210 | 2 | 210 | 28 | 22679. | 28.9273 | 1.3327 | Y | 7.71425 | 2939.88 | -14.6131 | -11.7607 | 0.806875 | |
c2_211 | 2 | 211 | 2 | 116.246 | 29.0616 | 1.33255 | Y | 7.7211 | 15.0557 | -14.6332 | -11.777 | 0.807484 | |
c2_212 | 2 | 212 | 212 | 1312855 | 29.2109 | 1.33311 | Y | 7.72792 | 169885. | -14.6555 | -11.7954 | 0.805862 | |
c2_213 | 2 | 213 | 142 | 591853. | 29.352 | 1.333 | Y | 7.73471 | 76519.1 | -14.6764 | -11.8125 | 0.805472 | |
c2_214 | 2 | 214 | 214 | 1350436 | 29.4881 | 1.33293 | Y | 7.74147 | 174442. | -14.6965 | -11.8288 | 0.805819 | |
c2_215 | 2 | 215 | 430 | 5478144 | 29.6276 | 1.33302 | Y | 7.74819 | 707022. | -14.717 | -11.8456 | 0.80566 | |
c2_216 | 2 | 216 | 108 | 347207 | 29.7674 | 1.33312 | Y | 7.75489 | 44772.7 | -14.7374 | -11.8623 | 0.805462 | |
c2_217 | 2 | 217 | 62 | 114953. | 29.9044 | 1.33304 | Y | 7.76155 | 14810.5 | -14.7574 | -11.8785 | 0.805669 | |
c2_218 | 2 | 218 | 218 | 1427503 | 30.0375 | 1.33282 | Y | 7.76818 | 183763. | -14.7766 | -11.894 | 0.806444 | |
c2_219 | 2 | 219 | 2 | 120.676 | 30.1689 | 1.3325 | Y | 7.77479 | 15.5214 | -14.7956 | -11.9093 | 0.807451 | |
c2_220 | 2 | 220 | 88 | 234680. | 30.3048 | 1.33245 | Y | 7.78136 | 30159.3 | -14.8151 | -11.9252 | 0.807812 | |
c2_221 | 2 | 221 | 2 | 121.749 | 30.4373 | 1.33223 | Y | 7.7879 | 15.6331 | -14.8341 | -11.9405 | 0.808651 | |
c2_222 | 2 | 222 | 74 | 167412. | 30.572 | 1.33211 | Y | 7.79442 | 21478.5 | -14.8532 | -11.956 | 0.80917 | |
c2_223 | 2 | 223 | 2 | 122.822 | 30.7055 | 1.33195 | Y | 7.8009 | 15.7446 | -14.8722 | -11.9713 | 0.809858 | |
c2_224 | 2 | 224 | 112 | 386870. | 30.8411 | 1.33187 | Y | 7.80735 | 49552. | -14.8913 | -11.9869 | 0.810243 | |
c2_225 | 2 | 225 | 2 | 123.893 | 30.9733 | 1.33166 | Y | 7.81378 | 15.8557 | -14.9099 | -12.0019 | 0.811088 | |
c2_226 | 2 | 226 | 226 | 1589469 | 31.1197 | 1.33207 | Y | 7.82018 | 203252. | -14.9304 | -12.0188 | 0.809961 | |
c2_227 | 2 | 227 | 2 | 125.053 | 31.2632 | 1.33233 | Y | 7.82655 | 15.978 | -14.9503 | -12.0352 | 0.809236 | |
c2_228 | 2 | 228 | 2 | 125.628 | 31.4069 | 1.33259 | Y | 7.83289 | 16.0385 | -14.9703 | -12.0516 | 0.808493 | |
c2_229 | 2 | 229 | 458 | 6617624 | 31.5479 | 1.33267 | Y | 7.8392 | 844170. | -14.9897 | -12.0676 | 0.808125 | |
c2_230 | 2 | 230 | 2 | 126.722 | 31.6804 | 1.33246 | Y | 7.84549 | 16.1522 | -15.0079 | -12.0823 | 0.808931 | |
c2_231 | 2 | 231 | 462 | 6792296 | 31.8224 | 1.33265 | Y | 7.85175 | 865068. | -15.0273 | -12.0983 | 0.808439 | |
c2_232 | 2 | 232 | 58 | 107516 | 31.9608 | 1.33268 | Y | 7.85798 | 13682.4 | -15.0462 | -12.1137 | 0.808436 | |
c2_233 | 2 | 233 | 466 | 6970520 | 32.0991 | 1.33271 | Y | 7.86419 | 886363. | -15.0649 | -12.129 | 0.808434 | |
c2_234 | 2 | 234 | 234 | 1765148 | 32.2366 | 1.33271 | Y | 7.87036 | 224278. | -15.0835 | -12.1441 | 0.808553 | |
c2_235 | 2 | 235 | 470 | 7152096 | 32.3771 | 1.33282 | Y | 7.87652 | 908028. | -15.1024 | -12.1596 | 0.80827 | |
c2_236 | 2 | 236 | 118 | 452761 | 32.5166 | 1.3329 | Y | 7.88264 | 57437.7 | -15.121 | -12.1749 | 0.808116 | |
c2_237 | 2 | 237 | 474 | 7337024 | 32.656 | 1.33298 | Y | 7.88874 | 930062. | -15.1396 | -12.1902 | 0.807975 | |
c2_238 | 2 | 238 | 2 | 131.168 | 32.792 | 1.33291 | Y | 7.89482 | 16.6145 | -15.1577 | -12.2049 | 0.80829 | |
c2_239 | 2 | 239 | 478 | 7525600 | 32.9371 | 1.33322 | Y | 7.90087 | 952503. | -15.1769 | -12.2207 | 0.807404 | |
c2_240 | 2 | 240 | 240 | 1905251 | 33.0773 | 1.33321 | Y | 7.90689 | 240961. | -15.1953 | -12.2358 | 0.807169 | |
c2_241 | 2 | 241 | 2 | 132.846 | 33.2116 | 1.33292 | Y | 7.91289 | 16.7886 | -15.2129 | -12.2501 | 0.8077 | |
c2_242 | 2 | 242 | 22 | 16140.8 | 33.3488 | 1.33301 | Y | 7.91886 | 2038.27 | -15.2308 | -12.2648 | 0.807858 | |
c2_243 | 2 | 243 | 2 | 133.94 | 33.4851 | 1.33296 | Y | 7.92481 | 16.9014 | -15.2485 | -12.2792 | 0.808127 | |
c2_244 | 2 | 244 | 122 | 500380. | 33.6187 | 1.33269 | Y | 7.93074 | 63093.8 | -15.2658 | -12.2933 | 0.808745 | |
c2_245 | 2 | 245 | 2 | 135.002 | 33.7505 | 1.33248 | Y | 7.93664 | 17.01 | -15.2828 | -12.307 | 0.809587 | |
c2_246 | 2 | 246 | 246 | 2050463 | 33.883 | 1.3323 | Y | 7.94251 | 258163. | -15.2998 | -12.3208 | 0.810331 | |
c2_247 | 2 | 247 | 494 | 8301032 | 34.0156 | 1.33212 | Y | 7.94837 | 1044369. | -15.3168 | -12.3346 | 0.811057 | |
c2_248 | 2 | 248 | 62 | 131273. | 34.1502 | 1.33201 | Y | 7.9542 | 16503.7 | -15.3339 | -12.3486 | 0.811526 | |
c2_249 | 2 | 249 | 2 | 137.139 | 34.2848 | 1.3319 | Y | 7.96 | 17.2285 | -15.351 | -12.3625 | 0.811988 | |
c2_250 | 2 | 250 | 250 | 2151251 | 34.42 | 1.33181 | Y | 7.96578 | 270061. | -15.3681 | -12.3764 | 0.81237 | |
c2_251 | 2 | 251 | 502 | 8707672 | 34.5537 | 1.33167 | Y | 7.97154 | 1092345. | -15.3849 | -12.3901 | 0.812941 | |
c2_252 | 2 | 252 | 126 | 550666. | 34.6855 | 1.33146 | Y | 7.97728 | 69029.3 | -15.4015 | -12.4035 | 0.813751 | |
c2_253 | 2 | 253 | 2 | 139.257 | 34.8142 | 1.33116 | Y | 7.98299 | 17.4442 | -15.4176 | -12.4165 | 0.814925 | |
c2_254 | 2 | 254 | 254 | 2255701 | 34.9634 | 1.33165 | Y | 7.98868 | 282362. | -15.4361 | -12.432 | 0.813552 | |
c2_255 | 2 | 255 | 30 | 31598.4 | 35.1093 | 1.33198 | Y | 7.99435 | 3952.58 | -15.4542 | -12.447 | 0.812605 | |
c2_256 | 2 | 256 | 128 | 577595 | 35.2536 | 1.33224 | Y | 8 | 72199.4 | -15.472 | -12.4617 | 0.811854 | |
QAM2_256 | 2 | 256 | 2 | 170 | 42.5 | 1.39529 | Y | 8 | 21.25 | -16.2839 | -13.2736 | 0 | [Campopiano62], [Forney84]. In the 12 kbit/s mode of the V.33 modem standard [Hanzo04, Sec. 8.5]. |
DSQ2_512 | 2 | 512 | 2.82843 | 682 | 85.25 | 1.39883 | Y | 9 | 75.7778 | -19.3069 | -15.7851 | -0.00424738 | |
cross2_512 | 2 | 512 | 2 | 330 | 82.5 | 1.35056 | Y | 9 | 36.6667 | -19.1645 | -15.6427 | 0.138157 | |
QAM2_1024 | 2 | 1024 | 2 | 682 | 170.5 | 1.39883 | Y | 10 | 68.2 | -22.3172 | -18.3378 | 0 |