Sphere packings of dimension 8
Introduction
A page is devoted to eight-dimensional sphere packings since these are geometrically particularly appealing and have found usage in optical communication systems. The dimensions may in a communication scenario represent quadratures, time slots, frequency bands, or polarizations, as discussed on the page for other dimensions.
The best lattice in eight dimensions (8d) is the E8 lattice. It can be constructed from the 8d cubic lattice by shifting every second point along the main diagonal, halfway to the next point in the cubic lattice. This shifting operation increases the minimum distance by √2 without changing the density. Thus, the coding gain of E8 over the cubic lattice is a factor of 2, or 3.01 dB. The total gain, which also includes a shaping gain, is 10log10((5π/6)(2/3)1/4) = 3.739 dB [Calderbank87, Sec. IV], [Conway99, pp. 73–74, 121].
Subsets of the E8 lattice have been designed by numerical optimization for sizes up to 256 [Agrell14] and selected larger sizes [Agrell16]. These are included under the name l8_*.txt. We conjecture that these packings are optimal lattice subsets for all included sizes, however with no claim that they would be optimal among nonlattice packings. Only one case has been found when a nonlattice packing is better than the best E8-based packing, which occurs for M = 10.
The most power-efficient 8d packing known, in the sense of maximizing γ, is the biorthogonal packing with M = 16 and γ = 3.010 dB. As M increases, γ is irregular and displays two other prominent peaks with almost the same power efficiency, which are 3.007 dB at M = 58 and 2.981 dB at M = 241. As M continues to increase, the power efficiency drops rapidly [Agrell14]. At the same time, the gain G increases slowly towards 3.739 dB (see above), but it seems like very large sizes would be needed to get near this asymptotic value.
Database
File | N | M | d | E | En | κ | Lat | β | Eb | CFM [dB] | γ [dB] | G [dB] | Comment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BPSK8_2 | 8 | 2 | 2 | 1 | 0.25 | 1 | Y | 0.25 | 1 | 12.0412 | 0 | -2.97094 | |
triangle8_3 | 8 | 3 | 4.24264 | 6 | 0.333333 | 1 | Y | 0.396241 | 3.78558 | 10.7918 | 0.750803 | -1.99181 | |
tetrahedron8_4 | 8 | 4 | 5.65685 | 12 | 0.375 | 1 | Y | 0.5 | 6 | 10.2803 | 1.24939 | -1.32898 | |
simplex8_5 | 8 | 5 | 7.07107 | 20 | 0.4 | 1 | Y | 0.580482 | 8.61353 | 10 | 1.61729 | -0.832402 | |
simplex8_6 | 8 | 6 | 8.48528 | 30 | 0.416667 | 1 | Y | 0.646241 | 11.6056 | 9.82271 | 1.90605 | -0.437666 | |
simplex8_7 | 8 | 7 | 9.89949 | 42 | 0.428571 | 1 | Y | 0.701839 | 14.9607 | 9.70037 | 2.14214 | -0.111403 | |
ortho8_8 | 8 | 8 | 4 | 8 | 0.5 | 1 | Y | 0.75 | 2.66667 | 9.0309 | 1.76091 | -0.414088 | An orthogonal packing [Viterbi61]. Becomes the 7-dimensional simplex if the mean is subtracted, i.e., if the first coordinate is deleted. |
PPM8_8 | 8 | 8 | 1.41421 | 1 | 0.5 | 1 | Y | 0.75 | 0.333333 | 9.0309 | 1.76091 | -0.414088 | Pulse-position modulation, where all coordinates except one are zero. Geometrically equivalent to ortho8_8. |
simplex8_8 | 8 | 8 | 11.3137 | 56 | 0.4375 | 1 | Y | 0.75 | 18.6667 | 9.61082 | 2.34083 | 0.165831 | |
simplex8_9 | 8 | 9 | 8.48528 | 32 | 0.444444 | 1 | Y | 0.792481 | 10.0949 | 9.54243 | 2.51172 | 0.406325 | The 8d analogy of the triangle and tetrahedron. One of the three regular convex polytopes in 8d [Coxeter73], [Agrell11a]. |
l8_10 | 8 | 10 | 28.2843 | 376 | 0.47 | 1.01992 | Y | 0.830482 | 113.187 | 9.29962 | 2.47232 | 0.429464 | |
doublesimplex8_10 | 8 | 10 | 11.3137 | 59.2 | 0.4625 | 1.01169 | N | 0.830482 | 17.821 | 9.36948 | 2.54218 | 0.499325 | Not a lattice subset, which makes it unique among best known packings in 8d. |
l8_11 | 8 | 11 | 15.5563 | 116 | 0.479339 | 1.00892 | Y | 0.864858 | 33.5315 | 9.21417 | 2.56302 | 0.576941 | |
l8_12 | 8 | 12 | 16.9706 | 140 | 0.486111 | 1.00653 | Y | 0.896241 | 39.052 | 9.15324 | 2.65689 | 0.722821 | |
l8_13 | 8 | 13 | 18.3848 | 166 | 0.491124 | 1.00435 | Y | 0.92511 | 44.8595 | 9.10869 | 2.75002 | 0.863944 | |
l8_14 | 8 | 14 | 19.799 | 194 | 0.494898 | 1.00255 | Y | 0.951839 | 50.954 | 9.07544 | 2.84048 | 0.998964 | |
l8_15 | 8 | 15 | 21.2132 | 224 | 0.497778 | 1.00112 | Y | 0.976723 | 57.3346 | 9.05024 | 2.92736 | 1.12744 | |
biortho8_16 | 8 | 16 | 1.41421 | 1 | 0.5 | 1 | Y | 1 | 0.25 | 9.0309 | 3.0103 | 1.24939 | The cross-polytope or hyperoctahedron, used in biorthogonal modulation [Viterbi61], [Eriksson13], [Eriksson14a]. One of the three regular convex polytopes in 8d [Coxeter73], [Agrell11a]. |
hamming8_16 | 8 | 16 | 4 | 8 | 0.5 | 1 | Y | 1 | 2 | 9.0309 | 3.0103 | 1.24939 | A subset of the hypercube, given by the extended (8,4) Hamming code [Hamming50, Table IV], [Viterbi61, Sec. III-B]. Also a Reed–Muller code. Equivalent to the cross-polytope. |
l8_16 | 8 | 16 | 1.41421 | 1 | 0.5 | 1 | Y | 1 | 0.25 | 9.0309 | 3.0103 | 1.24939 | |
l8_17 | 8 | 17 | 48.0833 | 1216 | 0.525952 | 1.0322 | Y | 1.02187 | 297.495 | 8.81114 | 2.88448 | 1.16029 | |
l8_18 | 8 | 18 | 25.4558 | 354 | 0.546296 | 1.04367 | Y | 1.04248 | 84.8936 | 8.64632 | 2.8064 | 1.11691 | |
l8_19 | 8 | 19 | 53.7401 | 1624 | 0.562327 | 1.0463 | Y | 1.06198 | 382.304 | 8.52071 | 2.76128 | 1.10468 | |
l8_20 | 8 | 20 | 28.2843 | 460 | 0.575 | 1.04537 | Y | 1.08048 | 106.434 | 8.42392 | 2.7395 | 1.11415 | |
l8_21 | 8 | 21 | 59.397 | 2064 | 0.585034 | 1.04327 | Y | 1.09808 | 469.911 | 8.34879 | 2.73453 | 1.13897 | |
l8_22 | 8 | 22 | 31.1127 | 574 | 0.592975 | 1.04108 | Y | 1.11486 | 128.716 | 8.29023 | 2.74183 | 1.17473 | |
l8_23 | 8 | 23 | 65.0538 | 2536 | 0.599244 | 1.03929 | Y | 1.13089 | 560.62 | 8.24456 | 2.75817 | 1.2183 | |
l8_24 | 8 | 24 | 11.3137 | 77.3333 | 0.604167 | 1.03805 | Y | 1.14624 | 16.8667 | 8.20903 | 2.78119 | 1.26743 | |
l8_25 | 8 | 25 | 70.7107 | 3080 | 0.616 | 1.04284 | Y | 1.16096 | 663.242 | 8.12479 | 2.75238 | 1.2637 | |
l8_26 | 8 | 26 | 36.7696 | 840 | 0.621302 | 1.03118 | Y | 1.17511 | 178.707 | 8.08757 | 2.76776 | 1.30322 | |
l8_27 | 8 | 27 | 76.3675 | 3648 | 0.625514 | 1.02943 | Y | 1.18872 | 767.211 | 8.05823 | 2.78843 | 1.34714 | |
l8_28 | 8 | 28 | 79.196 | 3944 | 0.628827 | 1.02773 | Y | 1.20184 | 820.41 | 8.03529 | 2.81315 | 1.3943 | |
l8_29 | 8 | 29 | 82.0244 | 4248 | 0.631391 | 1.02621 | Y | 1.2145 | 874.437 | 8.01761 | 2.84097 | 1.4438 | |
l8_30 | 8 | 30 | 8.48528 | 45.6 | 0.633333 | 1.02493 | Y | 1.22672 | 9.29305 | 8.00428 | 2.87114 | 1.49494 | |
l8_31 | 8 | 31 | 87.6812 | 4952 | 0.644121 | 1.0309 | Y | 1.23855 | 999.557 | 7.93093 | 2.83946 | 1.48356 | |
l8_32 | 8 | 32 | 45.2548 | 1338 | 0.65332 | 1.03452 | Y | 1.25 | 267.6 | 7.86934 | 2.81784 | 1.48162 | |
l8_33 | 8 | 33 | 93.3381 | 5760 | 0.661157 | 1.03486 | Y | 1.2611 | 1141.86 | 7.81755 | 2.80444 | 1.48733 | |
l8_34 | 8 | 34 | 96.1665 | 6176 | 0.66782 | 1.03481 | Y | 1.27187 | 1213.96 | 7.77401 | 2.79782 | 1.49925 | |
l8_35 | 8 | 35 | 98.9949 | 6600 | 0.673469 | 1.03416 | Y | 1.28232 | 1286.73 | 7.73742 | 2.79679 | 1.51625 | |
l8_36 | 8 | 36 | 101.823 | 7032 | 0.678241 | 1.03658 | Y | 1.29248 | 1360.17 | 7.70676 | 2.8004 | 1.5374 | |
rectsimplex8_36 | 8 | 36 | 4.24264 | 14 | 0.777778 | 1 | Y | 1.29248 | 2.70797 | 7.11204 | 2.20569 | 0.942684 | The rectified simplex, which is obtained by taking the midpoint of all edges in a simplex. |
l8_37 | 8 | 37 | 104.652 | 7456 | 0.680789 | 1.03556 | Y | 1.30236 | 1431.24 | 7.69048 | 2.8172 | 1.57127 | |
l8_38 | 8 | 38 | 53.7401 | 1984 | 0.686981 | 1.03755 | Y | 1.31198 | 378.054 | 7.65116 | 2.80983 | 1.58054 | |
l8_39 | 8 | 39 | 110.309 | 8408 | 0.690993 | 1.03056 | Y | 1.32135 | 1590.8 | 7.62586 | 2.81545 | 1.60237 | |
l8_40 | 8 | 40 | 22.6274 | 355.2 | 0.69375 | 1.02954 | Y | 1.33048 | 66.7427 | 7.60857 | 2.82806 | 1.6308 | |
l8_41 | 8 | 41 | 115.966 | 9392 | 0.698394 | 1.02903 | Y | 1.33939 | 1753.04 | 7.5796 | 2.82806 | 1.64625 | |
l8_42 | 8 | 42 | 59.397 | 2478 | 0.702381 | 1.02807 | Y | 1.34808 | 459.543 | 7.55487 | 2.83143 | 1.6647 | |
l8_43 | 8 | 43 | 121.622 | 10432 | 0.705246 | 1.0269 | Y | 1.35657 | 1922.5 | 7.53719 | 2.841 | 1.68901 | |
l8_44 | 8 | 44 | 124.451 | 10960 | 0.707645 | 1.0259 | Y | 1.36486 | 2007.53 | 7.52245 | 2.85272 | 1.71515 | |
l8_45 | 8 | 45 | 127.279 | 11496 | 0.70963 | 1.02496 | Y | 1.37296 | 2093.28 | 7.51028 | 2.86627 | 1.7428 | |
l8_46 | 8 | 46 | 65.0538 | 3010 | 0.711248 | 1.02411 | Y | 1.38089 | 544.938 | 7.50039 | 2.88138 | 1.77171 | |
l8_47 | 8 | 47 | 132.936 | 12632 | 0.714803 | 1.02351 | Y | 1.38865 | 2274.16 | 7.47874 | 2.88406 | 1.7879 | |
l8_48 | 8 | 48 | 67.8823 | 3308 | 0.717882 | 1.02273 | Y | 1.39624 | 592.305 | 7.46007 | 2.88907 | 1.80615 | |
l8_49 | 8 | 49 | 138.593 | 13840 | 0.720533 | 1.02187 | Y | 1.40368 | 2464.95 | 7.44406 | 2.89613 | 1.82619 | |
l8_50 | 8 | 50 | 70.7107 | 3614 | 0.7228 | 1.02095 | Y | 1.41096 | 640.342 | 7.43042 | 2.90498 | 1.84776 | |
l8_51 | 8 | 51 | 48.0833 | 1674.67 | 0.724337 | 1.02016 | Y | 1.41811 | 295.229 | 7.42119 | 2.91768 | 1.87294 | |
l8_52 | 8 | 52 | 36.7696 | 982 | 0.726331 | 1.01932 | Y | 1.42511 | 172.267 | 7.40925 | 2.92714 | 1.89464 | |
l8_53 | 8 | 53 | 149.907 | 16360 | 0.728017 | 1.0185 | Y | 1.43198 | 2856.18 | 7.39918 | 2.93795 | 1.91748 | |
l8_54 | 8 | 54 | 76.3675 | 4254 | 0.729424 | 1.01773 | Y | 1.43872 | 739.198 | 7.3908 | 2.94997 | 1.9413 | |
l8_55 | 8 | 55 | 155.563 | 17680 | 0.730579 | 1.01703 | Y | 1.44534 | 3058.1 | 7.38393 | 2.96303 | 1.96595 | |
l8_56 | 8 | 56 | 79.196 | 4588 | 0.731505 | 1.01643 | Y | 1.45184 | 790.033 | 7.37843 | 2.97701 | 1.99132 | |
l8_57 | 8 | 57 | 161.22 | 19032 | 0.732225 | 1.01591 | Y | 1.45822 | 3262.88 | 7.37415 | 2.99179 | 2.0173 | |
l8_58 | 8 | 58 | 2.82843 | 5.86207 | 0.732759 | 1.0155 | Y | 1.4645 | 1.0007 | 7.37099 | 3.00727 | 2.04379 | |
l8_59 | 8 | 59 | 166.877 | 20640 | 0.741166 | 1.02195 | Y | 1.47066 | 3508.63 | 7.32144 | 2.97597 | 2.02331 | |
l8_60 | 8 | 60 | 84.8528 | 5392 | 0.748889 | 1.02662 | Y | 1.47672 | 912.832 | 7.27643 | 2.94882 | 2.00681 | |
l8_61 | 8 | 61 | 172.534 | 22504 | 0.75598 | 1.02992 | Y | 1.48268 | 3794.47 | 7.2355 | 2.92539 | 1.99386 | |
l8_62 | 8 | 62 | 87.6812 | 5862 | 0.762487 | 1.03215 | Y | 1.48855 | 984.516 | 7.19828 | 2.90531 | 1.9841 | |
l8_63 | 8 | 63 | 178.191 | 24400 | 0.768456 | 1.03358 | Y | 1.49432 | 4082.12 | 7.16441 | 2.88825 | 1.9772 | |
l8_64 | 8 | 64 | 90.5097 | 6340 | 0.773926 | 1.0344 | Y | 1.5 | 1056.67 | 7.13361 | 2.87392 | 1.97287 | |
l8_65 | 8 | 65 | 183.848 | 26328 | 0.778935 | 1.03476 | Y | 1.50559 | 4371.7 | 7.10559 | 2.86206 | 1.97086 | |
l8_66 | 8 | 66 | 93.3381 | 6832 | 0.784206 | 1.03561 | Y | 1.5111 | 1130.3 | 7.0763 | 2.84863 | 1.96714 | |
l8_67 | 8 | 67 | 189.505 | 28320 | 0.788594 | 1.03552 | Y | 1.51652 | 4668.58 | 7.05206 | 2.83995 | 1.96803 | |
l8_68 | 8 | 68 | 192.333 | 29320 | 0.792604 | 1.0352 | Y | 1.52187 | 4816.46 | 7.03004 | 2.8332 | 1.97071 | |
l8_69 | 8 | 69 | 195.161 | 30360 | 0.797101 | 1.03554 | Y | 1.52713 | 4970.1 | 7.00546 | 2.82363 | 1.97043 | |
l8_70 | 8 | 70 | 197.99 | 31408 | 0.801224 | 1.03557 | Y | 1.53232 | 5124.25 | 6.98306 | 2.81595 | 1.97192 | |
l8_71 | 8 | 71 | 200.818 | 32464 | 0.804999 | 1.03535 | Y | 1.53744 | 5278.92 | 6.96265 | 2.81002 | 1.97503 | |
l8_72 | 8 | 72 | 203.647 | 33496 | 0.807677 | 1.02989 | Y | 1.54248 | 5428.92 | 6.94822 | 2.80982 | 1.98375 | |
l8_73 | 8 | 73 | 206.475 | 34520 | 0.80972 | 1.02941 | Y | 1.54746 | 5576.89 | 6.93725 | 2.81283 | 1.99556 | |
l8_74 | 8 | 74 | 209.304 | 35552 | 0.811541 | 1.02889 | Y | 1.55236 | 5725.46 | 6.92749 | 2.81683 | 2.00824 | |
l8_75 | 8 | 75 | 212.132 | 36592 | 0.813156 | 1.02837 | Y | 1.5572 | 5874.63 | 6.91886 | 2.82172 | 2.0217 | |
l8_76 | 8 | 76 | 107.48 | 9410 | 0.814578 | 1.02785 | Y | 1.56198 | 1506.1 | 6.91128 | 2.82744 | 2.03588 | |
l8_77 | 8 | 77 | 217.789 | 38696 | 0.815821 | 1.02736 | Y | 1.5667 | 6174.78 | 6.90465 | 2.8339 | 2.0507 | |
l8_78 | 8 | 78 | 220.617 | 39760 | 0.816897 | 1.0269 | Y | 1.57135 | 6325.77 | 6.89893 | 2.84106 | 2.06611 | |
l8_79 | 8 | 79 | 223.446 | 40832 | 0.817818 | 1.02648 | Y | 1.57595 | 6477.38 | 6.89404 | 2.84885 | 2.08204 | |
l8_80 | 8 | 80 | 14.1421 | 164 | 0.82 | 1.02736 | Y | 1.58048 | 25.9415 | 6.88246 | 2.84976 | 2.091 | |
l8_81 | 8 | 81 | 229.103 | 43264 | 0.824265 | 1.02852 | Y | 1.58496 | 6824.14 | 6.85993 | 2.83952 | 2.08872 | |
l8_82 | 8 | 82 | 231.931 | 44552 | 0.828227 | 1.02933 | Y | 1.58939 | 7007.73 | 6.8391 | 2.8308 | 2.08786 | |
l8_83 | 8 | 83 | 234.759 | 45848 | 0.831906 | 1.02986 | Y | 1.59376 | 7191.8 | 6.81986 | 2.82349 | 2.08831 | |
l8_84 | 8 | 84 | 118.794 | 11778 | 0.834609 | 1.0285 | Y | 1.59808 | 1842.52 | 6.80577 | 2.82115 | 2.09365 | |
l8_85 | 8 | 85 | 240.416 | 48448 | 0.838201 | 1.02903 | Y | 1.60235 | 7558.91 | 6.78712 | 2.81409 | 2.09417 | |
l8_86 | 8 | 86 | 243.245 | 49784 | 0.841401 | 1.03036 | Y | 1.60657 | 7746.96 | 6.77057 | 2.80896 | 2.09655 | |
l8_87 | 8 | 87 | 246.073 | 51120 | 0.844233 | 1.03036 | Y | 1.61074 | 7934.26 | 6.75598 | 2.80562 | 2.10063 | |
l8_88 | 8 | 88 | 124.451 | 13112 | 0.846591 | 1.02873 | Y | 1.61486 | 2029.9 | 6.74386 | 2.80461 | 2.10695 | |
l8_89 | 8 | 89 | 251.73 | 53784 | 0.848756 | 1.02851 | Y | 1.61893 | 8305.47 | 6.73277 | 2.80446 | 2.11406 | |
l8_90 | 8 | 90 | 127.279 | 13782 | 0.850741 | 1.02826 | Y | 1.62296 | 2122.97 | 6.72263 | 2.80511 | 2.1219 | |
l8_91 | 8 | 91 | 257.387 | 56480 | 0.852554 | 1.02801 | Y | 1.62695 | 8678.82 | 6.71338 | 2.80652 | 2.1304 | |
l8_92 | 8 | 92 | 260.215 | 57856 | 0.854442 | 1.02721 | Y | 1.63089 | 8868.77 | 6.70377 | 2.80742 | 2.13833 | |
l8_93 | 8 | 93 | 263.044 | 59200 | 0.85559 | 1.02686 | Y | 1.63479 | 9053.15 | 6.69794 | 2.81196 | 2.14982 | |
l8_94 | 8 | 94 | 265.872 | 60680 | 0.85842 | 1.02705 | Y | 1.63865 | 9257.64 | 6.6836 | 2.80786 | 2.1526 | |
l8_95 | 8 | 95 | 268.701 | 62168 | 0.861053 | 1.02713 | Y | 1.64246 | 9462.61 | 6.6703 | 2.80466 | 2.15621 | |
l8_96 | 8 | 96 | 271.529 | 63664 | 0.863498 | 1.02711 | Y | 1.64624 | 9668.09 | 6.65799 | 2.80232 | 2.16061 | |
l8_97 | 8 | 97 | 274.357 | 65168 | 0.865767 | 1.02702 | Y | 1.64998 | 9874.07 | 6.64659 | 2.80077 | 2.16574 | |
l8_98 | 8 | 98 | 19.799 | 340 | 0.867347 | 1.02671 | Y | 1.65368 | 51.4006 | 6.63867 | 2.80258 | 2.17416 | |
l8_99 | 8 | 99 | 280.014 | 68152 | 0.869197 | 1.02647 | Y | 1.65734 | 10280.3 | 6.62942 | 2.80293 | 2.18105 | |
l8_100 | 8 | 100 | 282.843 | 69728 | 0.8716 | 1.02648 | Y | 1.66096 | 10495.1 | 6.61743 | 2.80043 | 2.18503 | |
l8_101 | 8 | 101 | 285.671 | 71312 | 0.873836 | 1.02642 | Y | 1.66455 | 10710.4 | 6.6063 | 2.79868 | 2.18969 | |
l8_102 | 8 | 102 | 288.5 | 72904 | 0.875913 | 1.0263 | Y | 1.66811 | 10926.2 | 6.59599 | 2.79763 | 2.195 | |
l8_103 | 8 | 103 | 291.328 | 74504 | 0.87784 | 1.02613 | Y | 1.67163 | 11142.5 | 6.58645 | 2.79724 | 2.20091 | |
l8_104 | 8 | 104 | 294.156 | 76096 | 0.879438 | 1.02579 | Y | 1.67511 | 11356.9 | 6.57855 | 2.79838 | 2.20829 | |
l8_105 | 8 | 105 | 296.985 | 77680 | 0.880726 | 1.02551 | Y | 1.67856 | 11569.4 | 6.57219 | 2.80097 | 2.21705 | |
l8_106 | 8 | 106 | 299.813 | 79352 | 0.882787 | 1.02543 | Y | 1.68198 | 11794.4 | 6.56204 | 2.79965 | 2.22185 | |
l8_107 | 8 | 107 | 302.642 | 81016 | 0.884531 | 1.02524 | Y | 1.68537 | 12017.6 | 6.55347 | 2.79981 | 2.22809 | |
l8_108 | 8 | 108 | 152.735 | 20680 | 0.886488 | 1.02514 | Y | 1.68872 | 3061.49 | 6.54387 | 2.79885 | 2.23314 | |
l8_109 | 8 | 109 | 308.299 | 84416 | 0.888141 | 1.02494 | Y | 1.69205 | 12472.5 | 6.53578 | 2.7993 | 2.23955 | |
l8_110 | 8 | 110 | 311.127 | 86152 | 0.89 | 1.0248 | Y | 1.69534 | 12704.2 | 6.5267 | 2.79867 | 2.24482 | |
l8_111 | 8 | 111 | 313.955 | 87880 | 0.891567 | 1.02459 | Y | 1.6986 | 12934.2 | 6.51906 | 2.79938 | 2.25139 | |
l8_112 | 8 | 112 | 158.392 | 22412 | 0.893335 | 1.02444 | Y | 1.70184 | 3292.32 | 6.51045 | 2.79904 | 2.25685 | |
l8_113 | 8 | 113 | 319.612 | 91408 | 0.894823 | 1.02422 | Y | 1.70504 | 13402.6 | 6.50323 | 2.79998 | 2.26355 | |
l8_114 | 8 | 114 | 161.22 | 23302 | 0.896507 | 1.02406 | Y | 1.70822 | 3410.27 | 6.49506 | 2.79991 | 2.26918 | |
l8_115 | 8 | 115 | 325.269 | 95016 | 0.898072 | 1.02387 | Y | 1.71137 | 13880.1 | 6.48749 | 2.80033 | 2.27526 | |
l8_116 | 8 | 116 | 328.098 | 96848 | 0.899673 | 1.02369 | Y | 1.7145 | 14121.9 | 6.47975 | 2.80052 | 2.28105 | |
l8_117 | 8 | 117 | 330.926 | 98688 | 0.901162 | 1.0235 | Y | 1.71759 | 14364.3 | 6.47257 | 2.80117 | 2.28727 | |
l8_118 | 8 | 118 | 333.754 | 100552 | 0.902686 | 1.02331 | Y | 1.72066 | 14609.5 | 6.46523 | 2.80159 | 2.2932 | |
l8_119 | 8 | 119 | 336.583 | 102432 | 0.904173 | 1.02312 | Y | 1.7237 | 14856.4 | 6.45808 | 2.80211 | 2.2992 | |
l8_120 | 8 | 120 | 169.706 | 26082 | 0.905625 | 1.02293 | Y | 1.72672 | 3776.23 | 6.45112 | 2.80274 | 2.30525 | |
l8_121 | 8 | 121 | 342.24 | 106240 | 0.907042 | 1.02273 | Y | 1.72972 | 15355.1 | 6.44433 | 2.80347 | 2.31137 | |
l8_122 | 8 | 122 | 172.534 | 27046 | 0.90856 | 1.02256 | Y | 1.73268 | 3902.33 | 6.43707 | 2.80366 | 2.3169 | |
l8_123 | 8 | 123 | 347.897 | 110144 | 0.91004 | 1.02238 | Y | 1.73563 | 15865.1 | 6.42999 | 2.80396 | 2.3225 | |
l8_124 | 8 | 124 | 350.725 | 112120 | 0.911485 | 1.0222 | Y | 1.73855 | 16122.6 | 6.4231 | 2.80437 | 2.32817 | |
l8_125 | 8 | 125 | 353.553 | 114112 | 0.912896 | 1.02201 | Y | 1.74145 | 16381.8 | 6.41639 | 2.80489 | 2.3339 | |
l8_126 | 8 | 126 | 356.382 | 116128 | 0.914336 | 1.02183 | Y | 1.74432 | 16643.7 | 6.40954 | 2.8052 | 2.33939 | |
l8_127 | 8 | 127 | 359.21 | 118152 | 0.91568 | 1.02164 | Y | 1.74717 | 16906.2 | 6.40316 | 2.80592 | 2.34524 | |
parity8_128 | 8 | 128 | 2.82843 | 8 | 1 | 1 | Y | 1.75 | 1.14286 | 6.0206 | 2.43038 | 1.9748 | Every second vertex of the hypercube, selected using a single-parity check [Hamming50], [Puttnam14]. Also a Reed–Muller code. |
l8_128 | 8 | 128 | 181.019 | 30050 | 0.917053 | 1.02145 | Y | 1.75 | 4292.86 | 6.39665 | 2.80644 | 2.35086 | |
l8_129 | 8 | 129 | 364.867 | 122256 | 0.918334 | 1.02126 | Y | 1.75281 | 17437.2 | 6.39059 | 2.80733 | 2.35681 | |
l8_130 | 8 | 130 | 183.848 | 31088 | 0.919763 | 1.02108 | Y | 1.75559 | 4427. | 6.38384 | 2.80747 | 2.36198 | |
l8_131 | 8 | 131 | 370.524 | 126440 | 0.920984 | 1.02088 | Y | 1.75836 | 17977. | 6.37808 | 2.80855 | 2.36803 | |
l8_132 | 8 | 132 | 373.352 | 128568 | 0.922348 | 1.0207 | Y | 1.7611 | 18251.1 | 6.37165 | 2.80889 | 2.37332 | |
l8_133 | 8 | 133 | 376.181 | 130688 | 0.923512 | 1.02049 | Y | 1.76382 | 18523.4 | 6.36618 | 2.81012 | 2.37946 | |
l8_134 | 8 | 134 | 189.505 | 33212 | 0.924816 | 1.0203 | Y | 1.76652 | 4700.2 | 6.36005 | 2.81064 | 2.38486 | |
l8_135 | 8 | 135 | 42.4264 | 1666.67 | 0.925926 | 1.0201 | Y | 1.7692 | 235.511 | 6.35484 | 2.81202 | 2.39108 | |
l8_136 | 8 | 136 | 384.666 | 137192 | 0.927173 | 1.01991 | Y | 1.77187 | 19357. | 6.34899 | 2.8127 | 2.39656 | |
l8_137 | 8 | 137 | 387.495 | 139376 | 0.928233 | 1.0197 | Y | 1.77451 | 19635.9 | 6.34403 | 2.81421 | 2.40285 | |
l8_138 | 8 | 138 | 390.323 | 141648 | 0.929742 | 1.01957 | Y | 1.77713 | 19926.5 | 6.33698 | 2.81357 | 2.40695 | |
l8_139 | 8 | 139 | 393.151 | 143912 | 0.931059 | 1.01936 | Y | 1.77974 | 20215.4 | 6.33083 | 2.81378 | 2.41186 | |
l8_140 | 8 | 140 | 395.98 | 146168 | 0.932194 | 1.01916 | Y | 1.78232 | 20502.5 | 6.32554 | 2.8148 | 2.41755 | |
l8_141 | 8 | 141 | 398.808 | 148432 | 0.933253 | 1.01895 | Y | 1.78489 | 20790.1 | 6.32061 | 2.81612 | 2.42351 | |
l8_142 | 8 | 142 | 200.818 | 37676 | 0.934239 | 1.01875 | Y | 1.78744 | 5269.56 | 6.31602 | 2.81773 | 2.42973 | |
l8_143 | 8 | 143 | 31.1127 | 905.231 | 0.935156 | 1.01854 | Y | 1.78997 | 126.431 | 6.31176 | 2.81961 | 2.43619 | |
l8_144 | 8 | 144 | 101.823 | 9708 | 0.936343 | 1.01835 | Y | 1.79248 | 1353.99 | 6.30625 | 2.8202 | 2.44133 | |
l8_145 | 8 | 145 | 410.122 | 157712 | 0.937646 | 1.01818 | Y | 1.79498 | 21965.7 | 6.30021 | 2.8202 | 2.44585 | |
l8_146 | 8 | 146 | 412.95 | 160064 | 0.938638 | 1.01798 | Y | 1.79746 | 22262.6 | 6.29562 | 2.8216 | 2.45173 | |
l8_147 | 8 | 147 | 415.779 | 162424 | 0.939562 | 1.01778 | Y | 1.79992 | 22559.9 | 6.29134 | 2.82327 | 2.45786 | |
l8_148 | 8 | 148 | 418.607 | 164792 | 0.940422 | 1.01757 | Y | 1.80236 | 22857.8 | 6.28737 | 2.8252 | 2.46421 | |
l8_149 | 8 | 149 | 421.436 | 167168 | 0.941219 | 1.01737 | Y | 1.80479 | 23156.1 | 6.28369 | 2.82737 | 2.47078 | |
l8_150 | 8 | 150 | 424.264 | 169680 | 0.942667 | 1.01726 | Y | 1.8072 | 23472.7 | 6.27702 | 2.82649 | 2.47427 | |
l8_151 | 8 | 151 | 427.092 | 172160 | 0.943818 | 1.01699 | Y | 1.8096 | 23784.2 | 6.27172 | 2.82694 | 2.47907 | |
l8_152 | 8 | 152 | 429.921 | 174664 | 0.944988 | 1.01683 | Y | 1.81198 | 24098.5 | 6.26634 | 2.82728 | 2.48371 | |
l8_153 | 8 | 153 | 432.749 | 177176 | 0.946089 | 1.01665 | Y | 1.81435 | 24413.2 | 6.26128 | 2.82788 | 2.48861 | |
l8_154 | 8 | 154 | 217.789 | 44924 | 0.947124 | 1.01647 | Y | 1.8167 | 6182.1 | 6.25653 | 2.82875 | 2.49374 | |
l8_155 | 8 | 155 | 438.406 | 182224 | 0.948096 | 1.01628 | Y | 1.81903 | 25044.1 | 6.25208 | 2.82988 | 2.49909 | |
l8_156 | 8 | 156 | 220.617 | 46188 | 0.948964 | 1.01603 | Y | 1.82135 | 6339.8 | 6.2481 | 2.83144 | 2.50486 | |
l8_157 | 8 | 157 | 444.063 | 187264 | 0.949653 | 1.01583 | Y | 1.82366 | 25671.5 | 6.24495 | 2.83378 | 2.51138 | |
l8_158 | 8 | 158 | 223.446 | 47446 | 0.950288 | 1.01565 | Y | 1.82595 | 6496.09 | 6.24205 | 2.83632 | 2.51808 | |
l8_159 | 8 | 159 | 449.72 | 192432 | 0.951466 | 1.01549 | Y | 1.82822 | 26314.1 | 6.23667 | 2.83636 | 2.52224 | |
l8_160 | 8 | 160 | 452.548 | 195008 | 0.952187 | 1.0153 | Y | 1.83048 | 26633.4 | 6.23338 | 2.83843 | 2.52842 | |
l8_161 | 8 | 161 | 455.377 | 197592 | 0.952857 | 1.01511 | Y | 1.83273 | 26953.2 | 6.23032 | 2.84071 | 2.53478 | |
l8_162 | 8 | 162 | 458.205 | 200184 | 0.953475 | 1.01493 | Y | 1.83496 | 27273.6 | 6.22751 | 2.84318 | 2.5413 | |
l8_163 | 8 | 163 | 461.034 | 202784 | 0.954044 | 1.01476 | Y | 1.83718 | 27594.4 | 6.22492 | 2.84584 | 2.54799 | |
l8_164 | 8 | 164 | 231.931 | 51392 | 0.955384 | 1.01466 | Y | 1.83939 | 6984.93 | 6.21882 | 2.84496 | 2.55112 | |
l8_165 | 8 | 165 | 466.69 | 208360 | 0.956657 | 1.01454 | Y | 1.84158 | 28285.5 | 6.21304 | 2.84434 | 2.55449 | |
l8_166 | 8 | 166 | 469.519 | 211160 | 0.957868 | 1.0144 | Y | 1.84376 | 28631.7 | 6.20755 | 2.84399 | 2.5581 | |
l8_167 | 8 | 167 | 472.347 | 213968 | 0.959016 | 1.01425 | Y | 1.84593 | 28978.4 | 6.20234 | 2.84388 | 2.56193 | |
l8_168 | 8 | 168 | 475.176 | 216784 | 0.960105 | 1.01409 | Y | 1.84808 | 29325.6 | 6.19741 | 2.84402 | 2.56598 | |
l8_169 | 8 | 169 | 478.004 | 219608 | 0.961136 | 1.01392 | Y | 1.85022 | 29673.2 | 6.19275 | 2.84439 | 2.57024 | |
l8_170 | 8 | 170 | 96.1665 | 8897.6 | 0.962111 | 1.01374 | Y | 1.85235 | 1200.85 | 6.18835 | 2.84497 | 2.57469 | |
l8_171 | 8 | 171 | 483.661 | 225264 | 0.962963 | 1.0133 | Y | 1.85446 | 30367.8 | 6.1845 | 2.84609 | 2.57965 | |
l8_172 | 8 | 172 | 486.489 | 228064 | 0.963629 | 1.01311 | Y | 1.85657 | 30710.5 | 6.1815 | 2.84801 | 2.5854 | |
l8_173 | 8 | 173 | 489.318 | 230872 | 0.964249 | 1.01293 | Y | 1.85866 | 31053.6 | 6.17871 | 2.8501 | 2.5913 | |
l8_174 | 8 | 174 | 492.146 | 233688 | 0.964824 | 1.01275 | Y | 1.86074 | 31397.3 | 6.17612 | 2.85237 | 2.59735 | |
l8_175 | 8 | 175 | 494.975 | 236544 | 0.965486 | 1.01257 | Y | 1.8628 | 31745.7 | 6.17314 | 2.85421 | 2.60295 | |
l8_176 | 8 | 176 | 497.803 | 239408 | 0.966103 | 1.01239 | Y | 1.86486 | 32094.7 | 6.17037 | 2.85622 | 2.60871 | |
l8_177 | 8 | 177 | 500.632 | 242264 | 0.966612 | 1.01222 | Y | 1.8669 | 32442. | 6.16808 | 2.85869 | 2.6149 | |
l8_178 | 8 | 178 | 251.73 | 61288 | 0.967176 | 1.01204 | Y | 1.86893 | 8198.26 | 6.16555 | 2.86088 | 2.62079 | |
l8_179 | 8 | 179 | 506.288 | 248048 | 0.967698 | 1.01188 | Y | 1.87095 | 33144.6 | 6.1632 | 2.86323 | 2.62682 | |
l8_180 | 8 | 180 | 254.558 | 62738 | 0.968179 | 1.01171 | Y | 1.87296 | 8374.16 | 6.16104 | 2.86574 | 2.63298 | |
l8_181 | 8 | 181 | 511.945 | 253864 | 0.968621 | 1.01156 | Y | 1.87496 | 33849.2 | 6.15906 | 2.86838 | 2.63927 | |
l8_182 | 8 | 182 | 257.387 | 64196 | 0.969025 | 1.01142 | Y | 1.87695 | 8550.58 | 6.15725 | 2.87117 | 2.64568 | |
l8_183 | 8 | 183 | 517.602 | 259712 | 0.969393 | 1.01129 | Y | 1.87892 | 34555.9 | 6.1556 | 2.8741 | 2.65221 | |
l8_184 | 8 | 184 | 260.215 | 65662 | 0.969725 | 1.01116 | Y | 1.88089 | 8727.52 | 6.15412 | 2.87715 | 2.65885 | |
l8_185 | 8 | 185 | 523.259 | 265816 | 0.97084 | 1.01106 | Y | 1.88285 | 35294.5 | 6.14912 | 2.87667 | 2.66193 | |
l8_186 | 8 | 186 | 263.044 | 67248 | 0.971904 | 1.01095 | Y | 1.88479 | 8919.83 | 6.14437 | 2.87639 | 2.6652 | |
l8_187 | 8 | 187 | 528.916 | 272176 | 0.972919 | 1.01082 | Y | 1.88672 | 36064.6 | 6.13983 | 2.87632 | 2.66865 | |
l8_188 | 8 | 188 | 265.872 | 68842 | 0.973885 | 1.01069 | Y | 1.88865 | 9112.61 | 6.13552 | 2.87643 | 2.67227 | |
l8_189 | 8 | 189 | 534.573 | 278568 | 0.974805 | 1.01054 | Y | 1.89056 | 36836.7 | 6.13142 | 2.87673 | 2.67607 | |
l8_190 | 8 | 190 | 268.701 | 70444 | 0.975679 | 1.01039 | Y | 1.89246 | 9305.86 | 6.12753 | 2.87721 | 2.68002 | |
l8_191 | 8 | 191 | 540.23 | 284992 | 0.976508 | 1.01023 | Y | 1.89436 | 37610.6 | 6.12384 | 2.87786 | 2.68412 | |
l8_192 | 8 | 192 | 543.058 | 288232 | 0.977349 | 1.01007 | Y | 1.89624 | 38000.5 | 6.1201 | 2.87844 | 2.68814 | |
l8_193 | 8 | 193 | 545.886 | 291472 | 0.97812 | 1.00991 | Y | 1.89811 | 38389.7 | 6.11668 | 2.8793 | 2.69243 | |
l8_194 | 8 | 194 | 274.357 | 73680 | 0.97885 | 1.00974 | Y | 1.89998 | 9694.85 | 6.11344 | 2.88032 | 2.69685 | |
l8_195 | 8 | 195 | 551.543 | 297976 | 0.97954 | 1.00958 | Y | 1.90183 | 39169.6 | 6.11038 | 2.8815 | 2.70142 | |
l8_196 | 8 | 196 | 554.372 | 301240 | 0.980191 | 1.00941 | Y | 1.90368 | 39560.3 | 6.10749 | 2.88283 | 2.70611 | |
l8_197 | 8 | 197 | 557.2 | 304552 | 0.980932 | 1.00925 | Y | 1.90551 | 39956.7 | 6.10421 | 2.88373 | 2.71037 | |
l8_198 | 8 | 198 | 280.014 | 76968 | 0.981635 | 1.00909 | Y | 1.90734 | 10088.4 | 6.1011 | 2.88478 | 2.71476 | |
l8_199 | 8 | 199 | 562.857 | 311200 | 0.982298 | 1.00892 | Y | 1.90916 | 40751. | 6.09817 | 2.88598 | 2.71928 | |
l8_200 | 8 | 200 | 565.685 | 314536 | 0.982925 | 1.00876 | Y | 1.91096 | 41148.9 | 6.0954 | 2.88732 | 2.72392 | |
l8_201 | 8 | 201 | 568.514 | 317872 | 0.983491 | 1.0086 | Y | 1.91276 | 41546.2 | 6.0929 | 2.88891 | 2.7288 | |
l8_202 | 8 | 202 | 571.342 | 321216 | 0.984021 | 1.00844 | Y | 1.91455 | 41944. | 6.09056 | 2.89063 | 2.73379 | |
l8_203 | 8 | 203 | 574.171 | 324600 | 0.984615 | 1.00828 | Y | 1.91633 | 42346.5 | 6.08794 | 2.89205 | 2.73847 | |
l8_204 | 8 | 204 | 288.5 | 81998 | 0.985174 | 1.00813 | Y | 1.91811 | 10687.4 | 6.08547 | 2.8936 | 2.74326 | |
l8_205 | 8 | 205 | 115.966 | 13254.4 | 0.985604 | 1.00797 | Y | 1.91987 | 1725.95 | 6.08358 | 2.89569 | 2.74858 | |
l8_206 | 8 | 206 | 582.656 | 334792 | 0.986167 | 1.00781 | Y | 1.92163 | 43555.8 | 6.08109 | 2.89718 | 2.75328 | |
l8_207 | 8 | 207 | 585.484 | 338216 | 0.986651 | 1.00767 | Y | 1.92337 | 43961.3 | 6.07897 | 2.899 | 2.75829 | |
l8_208 | 8 | 208 | 294.156 | 85412 | 0.987102 | 1.00753 | Y | 1.92511 | 11091.8 | 6.07698 | 2.90093 | 2.76341 | |
l8_209 | 8 | 209 | 591.141 | 345088 | 0.987523 | 1.00739 | Y | 1.92684 | 44773.8 | 6.07513 | 2.90298 | 2.76863 | |
l8_210 | 8 | 210 | 593.97 | 348536 | 0.987914 | 1.00725 | Y | 1.92856 | 45180.8 | 6.07341 | 2.90514 | 2.77394 | |
l8_211 | 8 | 211 | 596.798 | 351992 | 0.988275 | 1.00713 | Y | 1.93027 | 45588.3 | 6.07182 | 2.90741 | 2.77935 | |
l8_212 | 8 | 212 | 149.907 | 22216 | 0.988608 | 1.00701 | Y | 1.93198 | 2874.77 | 6.07036 | 2.90979 | 2.78484 | |
l8_213 | 8 | 213 | 602.455 | 359000 | 0.989112 | 1.00686 | Y | 1.93368 | 46414.2 | 6.06815 | 2.91139 | 2.78955 | |
l8_214 | 8 | 214 | 605.283 | 362552 | 0.989584 | 1.00671 | Y | 1.93537 | 46832.5 | 6.06607 | 2.91311 | 2.79437 | |
l8_215 | 8 | 215 | 608.112 | 366112 | 0.990027 | 1.00656 | Y | 1.93705 | 47251.3 | 6.06413 | 2.91493 | 2.79927 | |
l8_216 | 8 | 216 | 610.94 | 369680 | 0.990441 | 1.00643 | Y | 1.93872 | 47670.6 | 6.06232 | 2.91687 | 2.80428 | |
l8_217 | 8 | 217 | 613.769 | 373256 | 0.990826 | 1.00629 | Y | 1.94039 | 48090.4 | 6.06063 | 2.91891 | 2.80937 | |
l8_218 | 8 | 218 | 616.597 | 376840 | 0.991183 | 1.00616 | Y | 1.94205 | 48510.7 | 6.05906 | 2.92106 | 2.81456 | |
l8_219 | 8 | 219 | 619.426 | 380448 | 0.991556 | 1.00603 | Y | 1.9437 | 48933.6 | 6.05743 | 2.92311 | 2.81964 | |
l8_220 | 8 | 220 | 124.451 | 15361.6 | 0.991839 | 1.00592 | Y | 1.94534 | 1974.15 | 6.05619 | 2.92554 | 2.82508 | |
l8_221 | 8 | 221 | 625.082 | 387672 | 0.992179 | 1.00579 | Y | 1.94698 | 49778.7 | 6.0547 | 2.92771 | 2.83024 | |
l8_222 | 8 | 222 | 627.911 | 391296 | 0.992452 | 1.00568 | Y | 1.9486 | 50202.1 | 6.05351 | 2.93014 | 2.83567 | |
l8_223 | 8 | 223 | 630.739 | 394960 | 0.992781 | 1.00556 | Y | 1.95022 | 50630.1 | 6.05207 | 2.93231 | 2.84081 | |
l8_224 | 8 | 224 | 633.568 | 398616 | 0.993044 | 1.00545 | Y | 1.95184 | 51056.5 | 6.05091 | 2.93475 | 2.84621 | |
l8_225 | 8 | 225 | 636.396 | 402280 | 0.993284 | 1.00535 | Y | 1.95345 | 51483.4 | 6.04987 | 2.93728 | 2.85168 | |
l8_226 | 8 | 226 | 319.612 | 101488 | 0.9935 | 1.00526 | Y | 1.95504 | 12977.7 | 6.04892 | 2.93989 | 2.85723 | |
l8_227 | 8 | 227 | 642.053 | 409632 | 0.993693 | 1.00517 | Y | 1.95664 | 52338.8 | 6.04808 | 2.94258 | 2.86284 | |
l8_228 | 8 | 228 | 322.441 | 103342 | 0.993979 | 1.00506 | Y | 1.95822 | 13193.3 | 6.04683 | 2.94485 | 2.86802 | |
l8_229 | 8 | 229 | 647.71 | 417112 | 0.994241 | 1.00495 | Y | 1.9598 | 53208.5 | 6.04568 | 2.9472 | 2.87327 | |
l8_230 | 8 | 230 | 325.269 | 105216 | 0.99448 | 1.00485 | Y | 1.96137 | 13411. | 6.04464 | 2.94964 | 2.8786 | |
l8_231 | 8 | 231 | 653.367 | 424624 | 0.994697 | 1.00476 | Y | 1.96294 | 54080.2 | 6.04369 | 2.95216 | 2.88399 | |
l8_232 | 8 | 232 | 656.195 | 428392 | 0.994891 | 1.00467 | Y | 1.9645 | 54516.8 | 6.04285 | 2.95476 | 2.88945 | |
l8_233 | 8 | 233 | 659.024 | 432160 | 0.995045 | 1.0046 | Y | 1.96605 | 54952.9 | 6.04217 | 2.95751 | 2.89505 | |
l8_234 | 8 | 234 | 330.926 | 108988 | 0.995215 | 1.00452 | Y | 1.96759 | 13847.9 | 6.04143 | 2.96018 | 2.90056 | |
l8_235 | 8 | 235 | 664.68 | 439752 | 0.995364 | 1.00444 | Y | 1.96913 | 55830.8 | 6.04078 | 2.96292 | 2.90612 | |
l8_236 | 8 | 236 | 667.509 | 443560 | 0.995493 | 1.00438 | Y | 1.97066 | 56270.5 | 6.04022 | 2.96573 | 2.91175 | |
l8_237 | 8 | 237 | 670.337 | 447376 | 0.995603 | 1.00432 | Y | 1.97219 | 56710.7 | 6.03974 | 2.96862 | 2.91744 | |
l8_238 | 8 | 238 | 673.166 | 451200 | 0.995692 | 1.00427 | Y | 1.9737 | 57151.4 | 6.03935 | 2.97157 | 2.92318 | |
l8_239 | 8 | 239 | 675.994 | 455032 | 0.995763 | 1.00423 | Y | 1.97522 | 57592.7 | 6.03904 | 2.97459 | 2.92898 | |
l8_240 | 8 | 240 | 678.823 | 458872 | 0.995816 | 1.00419 | Y | 1.97672 | 58034.4 | 6.03881 | 2.97767 | 2.93483 | |
l8_241 | 8 | 241 | 2.82843 | 7.9668 | 0.995851 | 1.00417 | Y | 1.97822 | 1.00681 | 6.03866 | 2.98081 | 2.94073 | The 8-dimensional “kissing” packing, i.e., a central sphere surrounded by the maximum number of touching spheres. |
l8_242 | 8 | 242 | 342.24 | 117124 | 0.999966 | 1.00815 | Y | 1.97972 | 14790.5 | 6.02075 | 2.96618 | 2.92884 | |
l8_243 | 8 | 243 | 687.308 | 474280 | 1.004 | 1.01183 | Y | 1.9812 | 59847.5 | 6.00328 | 2.95197 | 2.91737 | |
l8_244 | 8 | 244 | 690.136 | 480072 | 1.00794 | 1.01523 | Y | 1.98268 | 60533.1 | 5.98623 | 2.93817 | 2.90629 | |
l8_245 | 8 | 245 | 692.965 | 485872 | 1.01181 | 1.01837 | Y | 1.98416 | 61218.9 | 5.9696 | 2.92477 | 2.89561 | |
l8_246 | 8 | 246 | 695.793 | 491680 | 1.0156 | 1.02126 | Y | 1.98563 | 61904.8 | 5.95338 | 2.91176 | 2.8853 | |
l8_247 | 8 | 247 | 698.621 | 497496 | 1.01931 | 1.02393 | Y | 1.98709 | 62591. | 5.93754 | 2.89912 | 2.87536 | |
l8_248 | 8 | 248 | 350.725 | 125830 | 1.02294 | 1.02638 | Y | 1.98855 | 15819.3 | 5.92209 | 2.88685 | 2.86577 | |
l8_249 | 8 | 249 | 704.278 | 509152 | 1.0265 | 1.02864 | Y | 1.99 | 63963.8 | 5.90701 | 2.87494 | 2.85653 | |
l8_250 | 8 | 250 | 707.107 | 515024 | 1.03005 | 1.03088 | Y | 1.99145 | 64654.5 | 5.89203 | 2.86311 | 2.84736 | |
l8_251 | 8 | 251 | 709.935 | 520880 | 1.03348 | 1.03281 | Y | 1.99289 | 65342.4 | 5.8776 | 2.85182 | 2.83872 | |
l8_252 | 8 | 252 | 356.382 | 131694 | 1.0369 | 1.03474 | Y | 1.99432 | 16508.6 | 5.86325 | 2.8406 | 2.83014 | |
l8_253 | 8 | 253 | 715.592 | 532680 | 1.04024 | 1.0365 | Y | 1.99575 | 66726.8 | 5.84925 | 2.8297 | 2.82187 | |
l8_254 | 8 | 254 | 359.21 | 134648 | 1.04352 | 1.0381 | Y | 1.99717 | 16854.8 | 5.83558 | 2.81913 | 2.81392 | |
l8_255 | 8 | 255 | 721.249 | 544512 | 1.04674 | 1.03957 | Y | 1.99859 | 68112.1 | 5.82223 | 2.80886 | 2.80626 | |
cube8_256 | 8 | 256 | 2 | 8 | 2 | 1 | Y | 2 | 1 | 3.0103 | 0 | 0 | The hypercube, one of the three regular convex polytopes in 8d [Coxeter73], [Agrell11a]. |
4iMDPM-QPSK8_256 | 8 | 256 | 2 | 6 | 1.5 | 1 | Y | 2 | 0.75 | 4.25969 | 1.24939 | 1.24939 | A generalized PPM packing [Eriksson14b]. |
APSK8_256 | 8 | 256 | 2 | 6 | 1.5 | 1 | N | 2 | 0.75 | 4.25969 | 1.24939 | 1.24939 | [Zhang15]. Even though the listed performance metrics are the same as for 4iMDPM-QPSK, two packings are geometrically different. This is not a lattice packing and it has fewer nearest neighbors than 4iMDPM-QPSK. |
l8_256 | 8 | 256 | 362.039 | 137610 | 1.04988 | 1.04089 | Y | 2 | 17201.3 | 5.8092 | 2.7989 | 2.7989 | [Agrell14], [Agrell16] |
6P-QPSK8_512 | 8 | 512 | 2 | 8 | 2 | 1 | Y | 2.25 | 0.888889 | 3.0103 | 0.511525 | 0.977001 | A constant-radius packing obtained from a pair of 4-dimensional 24-point packings [Agrell09, Fig. 3]. An analogous construction method was used in [Forney84, Sec. IV-C], [Forney89a] to construct cross-shaped packings. |
l8_512 | 8 | 512 | 724.077 | 698092 | 1.3315 | 1.03774 | Y | 2.25 | 77565.8 | 4.77717 | 2.2784 | 2.74387 | [Agrell16] |
l8_1024 | 8 | 1024 | 1448.15 | 3315618 | 1.58101 | 1.03878 | Y | 2.5 | 331562. | 4.03125 | 1.99005 | 2.93067 | [Agrell16] |
l8_2048 | 8 | 2048 | 2896.31 | 15639884 | 1.86442 | 1.03101 | Y | 2.75 | 1421808. | 3.31516 | 1.68789 | 3.11305 | [Agrell16] |
l8_4096 | 8 | 4096 | 2896.31 | 18847171 | 2.24676 | 1.04061 | Y | 3 | 1570598. | 2.50504 | 1.25565 | 3.17451 | [Agrell16] |
References
- [Agrell14]
- E. Agrell, unpublished, 2014.
- [Agrell16]
- E. Agrell, unpublished, 2016.