Sphere packings of dimension 4
Introduction
Four-dimensional (4d) sphere packings have a natural application in optical communications, where the electromagnetic field has four degrees of freedom: two orthogonal polarizations and two orthogonal quadratures in each polarization [Betti90], [Betti91], [Agrell09]. However, 4d sphere packings were studied even before their applications in optical communications arose. In the context of modulation, the early works constructed a 4d signal space by encoding data simultaneously over a pair of frequencies or a pair of time slots [Welti74], [Zetterberg77], [Saha89].
In a pure mathematical context, 4d geometry is special due to the existence of the so-called D4 lattice. If a single parity check is applied to the 4d cubic lattice, thus removing half the points, the D4 lattice is obtained. Applying another parity check to D4 gives the cubic lattice back, but rescaled and rotated compared with the original. This so-called set partitioning (SP) process is often applied recursively [Ungerboeck82], [Forney88].
Conversely, the D4 lattice can be constructed by interlacing two 4d cubic lattices with each other. To see how this is possible, we first consider the two-dimensional pattern obtained by placing circles centered on a square grid. If the circles barely touch each other, there will be diamond-shaped “holes” between the circles. These size of these holes are large enough so that a circle with radius √2−1 can be fitted inside each of them, if the original circles have radius 1. The holes are also located on a square grid. If we repeat the same exercise in three dimensions, it can be shown that if unit-radius spheres are placed on a cubic grid, the holes between allows spheres of radius √3−1 to be fitted inside. And finally, generalizing the pattern to four dimensions, the holes between the unit-radius (hyper)spheres centered on a cubic lattice allows another set of spheres of radius √4−1 = 1, i.e., the same size as the original spheres. Therefore, two cubic lattices can coexist in 4d space, without reducing the minimum distance compared with a single cubic lattice. This construction yields the D4 lattice, which has twice the density, measured as the number of spheres per unit volume, of the cubic lattice.
If the number of points is large, the best 4d sphere packings are thus subsets of the D4 lattice. Good packings of selected sizes were designed in [Welti74] by selecting D4 lattice points inside suitably chosen hyperspheres. These packings are included, rotated and rescaled into integer coordinates, under the name w4_*.txt.
Optimal lattice subsets (which are not necessarily the optimal packings) are included under the name l4_*.txt. These sphere packings are spherical subsets of the D4 lattice. Optimality is guaranteed by enumerating and testing a finite number of possible centroids inside the fundamental simplex [Conway82] of the lattice. The applied algorithm [Agrell14] is a straightforward generalization of the algorithm in [Chow95] for optimizing 2-dimensional lattice subsets.
Conjectured optimal sphere packings of sizes up to M ≤ 32 are collected online in Sloane's unpublished tables [Sloane-web]. These packings are included here, sometimes after rescaling and rotation, under the name c4_*.txt.
The most power-efficient 4d packing, in the sense of maximizing γ, is the biorthogonal packing with size M = 8, whose power efficiency is γ = 3/2 = 1.761 dB. Its coordinates are all 0 except one, which is ±1.
The 24 nearest neighbors of the D4 lattice form the 24-cell. Coxeter remarked that a “peculiarity of four-dimensional space is the occurrence of the 24-cell, having no analogue above or below” [Coxeter73, p. 289].
As M → ∞, the gain asymptotically tends to G → 10log10(π/2) = 1.961 dB, which equals the gain of the D4 lattice over the cubic lattice [Calderbank87, Sec. IV], [Conway99, pp. 10, 73–74, 119]. The largest 4d packing in this database comes rather close, with a gain of 1.903 dB.Database
File | N | M | d | E | En | κ | Lat | β | Eb | CFM [dB] | γ [dB] | G [dB] | Comment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BPSK4_2 | 4 | 2 | 2 | 1 | 0.25 | 1 | Y | 0.5 | 1 | 9.0309 | 0 | -2.57837 | |
triangle4_3 | 4 | 3 | 4.24264 | 6 | 0.333333 | 1 | Y | 0.792481 | 3.78558 | 7.78151 | 0.750803 | -1.35459 | |
ortho4_4 | 4 | 4 | 2.82843 | 4 | 0.5 | 1 | Y | 1 | 2 | 6.0206 | 0 | -1.76091 | An orthogonal packing [Viterbi61]. Becomes the 3-dimensional simplex if the mean is subtracted, i.e., if the first coordinate is deleted. |
PPM4_4 | 4 | 4 | 1.41421 | 1 | 0.5 | 1 | Y | 1 | 0.5 | 6.0206 | 0 | -1.76091 | Pulse-position modulation, where all coordinates except one are zero. Geometrically equivalent to ortho4_4. |
tetrahedron4_4 | 4 | 4 | 5.65685 | 12 | 0.375 | 1 | Y | 1 | 6 | 7.26999 | 1.24939 | -0.511525 | [Dochhan13] |
l4_5 | 4 | 5 | 10 | 44 | 0.44 | 1.04959 | Y | 1.16096 | 18.9498 | 6.57577 | 1.20336 | -0.285316 | |
simplex4_5 | 4 | 5 | 3.90879 | 6.11146 | 0.4 | 1 | Y | 1.16096 | 2.63206 | 6.9897 | 1.61729 | 0.128611 | [Coxeter73], [Zetterberg77], [Betti91], [Biglieri92], [Karlsson10b], [Agrell11a]. The 4d analogy of the triangle and tetrahedron. One of the six regular convex polytopes in 4d. |
l4_6 | 4 | 6 | 6 | 17 | 0.472222 | 1.02768 | Y | 1.29248 | 6.5765 | 6.26884 | 1.36248 | 0.0994747 | |
doublesimplex4_6 | 4 | 6 | 5.65685 | 14.6667 | 0.458333 | 1.06612 | N | 1.29248 | 5.67384 | 6.39849 | 1.49213 | 0.229124 | Two simplices arranged so that they share a facet [Karlsson10b]. |
l4_7 | 4 | 7 | 14 | 96 | 0.489796 | 1.01042 | Y | 1.40368 | 34.1959 | 6.11015 | 1.56222 | 0.492278 | |
c4_7 | 4 | 7 | 1.75697 | 1.51197 | 0.489796 | 1.01042 | Y | 1.40368 | 0.538575 | 6.11015 | 1.56222 | 0.492278 | [Sloane-web], [Karlsson10b] |
voronoi4_8 | 4 | 8 | 8 | 52 | 0.8125 | 1.07101 | Y | 1.5 | 17.3333 | 3.91207 | -0.347621 | -1.24867 | This Voronoi code, given in [Forney89b, Table III], does not have zero mean and can be improved by translation. |
biortho4_8 | 4 | 8 | 1.41421 | 1 | 0.5 | 1 | Y | 1.5 | 0.333333 | 6.0206 | 1.76091 | 0.859864 | [Welti74], [Zetterberg77], [Saha89], [Betti91], [Biglieri92]. The cross-polytope or hyperoctahedron. One of the six regular convex polytopes in 4d [Coxeter73], [Agrell11a]. Used in biorthogonal modulation. |
parity4_8 | 4 | 8 | 2.82843 | 4 | 0.5 | 1 | Y | 1.5 | 1.33333 | 6.0206 | 1.76091 | 0.859864 | A hypercube with every second point removed [Hamming50]. Equivalent to biortho4_8 by rotation. |
l4_8 | 4 | 8 | 2 | 2 | 0.5 | 1 | Y | 1.5 | 0.666667 | 6.0206 | 1.76091 | 0.859864 | Known as polarization-switched QPSK (PS-QPSK) in optical communications [Karlsson09], [Karlsson10b]. |
c4_8 | 4 | 8 | 1.95828 | 1.91744 | 0.5 | 1 | Y | 1.5 | 0.639146 | 6.0206 | 1.76091 | 0.859864 | [Sloane-web]. Equivalent to biortho4_8 by rotation. |
tetra4_9 | 4 | 9 | 1.73205 | 2.66667 | 0.888889 | 1.125 | Y | 1.58496 | 0.84124 | 3.52183 | -0.498585 | -1.24939 | The ternary (4,2,3) tetracode, mapped onto a sequence of four 3-PAM symbols, i.e., a 3×3×3×3 hypercube [Conway99, p. 81]. |
l4_9 | 4 | 9 | 18 | 192 | 0.592593 | 1.14844 | Y | 1.58496 | 60.5693 | 5.28274 | 1.26233 | 0.511525 | |
c4_9 | 4 | 9 | 1.60884 | 1.48166 | 0.572431 | 1.03947 | N | 1.58496 | 0.467413 | 5.43307 | 1.41266 | 0.661857 | [Sloane-web] |
w4_10 | 4 | 10 | 2 | 2.6 | 0.65 | 1.09467 | Y | 1.66096 | 0.782678 | 4.88117 | 1.06417 | 0.448769 | [Welti74] |
l4_10 | 4 | 10 | 2 | 2.6 | 0.65 | 1.09467 | Y | 1.66096 | 0.782678 | 4.88117 | 1.06417 | 0.448769 | |
c4_10 | 4 | 10 | 2.51293 | 3.78888 | 0.6 | 1 | Y | 1.66096 | 1.14057 | 5.22879 | 1.41179 | 0.79639 | [Sloane-web] |
rectsimplex4_10 | 4 | 10 | 1.9544 | 2.2918 | 0.6 | 1 | Y | 1.66096 | 0.689899 | 5.22879 | 1.41179 | 0.79639 | [Lachs63, Table IV], [Karlsson10b]. The rectified simplex, which is obtained by taking the midpoint of all edges in a simplex. |
l4_11 | 4 | 11 | 22 | 332 | 0.68595 | 1.1228 | Y | 1.72972 | 95.9695 | 4.64737 | 1.00652 | 0.514417 | |
c4_11 | 4 | 11 | 2.77961 | 4.88298 | 0.632001 | 1.02546 | N | 1.72972 | 1.4115 | 5.00312 | 1.36227 | 0.870166 | [Sloane-web] |
w4_12 | 4 | 12 | 2.82843 | 5.66667 | 0.708333 | 1.11073 | Y | 1.79248 | 1.58068 | 4.50792 | 1.02187 | 0.642997 | [Welti74] |
dicyclic4_12 | 4 | 12 | 1 | 1 | 1 | 1 | Y | 1.79248 | 0.278943 | 3.0103 | -0.475754 | -0.854626 | [Zetterberg77, Fig. 1 and Sec. 8] |
l4_12 | 4 | 12 | 4 | 11.3333 | 0.708333 | 1.11073 | Y | 1.79248 | 3.16135 | 4.50792 | 1.02187 | 0.642997 | |
c4_12 | 4 | 12 | 2.82843 | 5.25828 | 0.657285 | 1.00483 | N | 1.79248 | 1.46676 | 4.83276 | 1.34671 | 0.967833 | [Sloane-web], [Karlsson10b] |
l4_13 | 4 | 13 | 26 | 508 | 0.751479 | 1.1235 | Y | 1.85022 | 137.281 | 4.25113 | 0.902763 | 0.628614 | |
c4_13 | 4 | 13 | 1.73475 | 2.08821 | 0.693908 | 1.05847 | N | 1.85022 | 0.564315 | 4.59728 | 1.24891 | 0.974763 | [Sloane-web] |
l4_14 | 4 | 14 | 14 | 153 | 0.780612 | 1.11825 | Y | 1.90368 | 40.1854 | 4.08595 | 0.86128 | 0.684566 | |
c4_14 | 4 | 14 | 4.44978 | 14.2187 | 0.718099 | 1.00258 | N | 1.90368 | 3.73454 | 4.44846 | 1.22379 | 1.04708 | [Sloane-web] |
l4_15 | 4 | 15 | 6 | 28.8 | 0.8 | 1.11111 | Y | 1.95345 | 7.37159 | 3.9794 | 0.866813 | 0.781219 | |
c4_15 | 4 | 15 | 2.55278 | 4.84378 | 0.74329 | 1.0105 | N | 1.95345 | 1.23981 | 4.29871 | 1.18613 | 1.10053 | [Sloane-web] |
dicyclic4_16 | 4 | 16 | 0.765367 | 1 | 1.70711 | 1 | N | 2 | 0.25 | 0.687693 | -2.32261 | -2.32261 | [Zetterberg77, Sec. 8] |
cube4_16 | 4 | 16 | 2 | 4 | 1 | 1 | Y | 2 | 1 | 3.0103 | 0 | 0 | [Welti74], [Zetterberg77], [Saha89], [Biglieri92]. The hypercube or tesseract, one of the six regular convex polytopes in 4d [Coxeter73], [Agrell11a]. Also known as PM-QPSK. |
SO-PM-QPSK4_16 | 4 | 16 | 2.82843 | 7.23607 | 0.904508 | 1.2 | N | 2 | 1.80902 | 3.44617 | 0.435873 | 0.435873 | Constructed from the hypercube by changing the amplitude of half of the points [Sjodin13], [Alvarado15]. |
l4_16 | 4 | 16 | 8 | 53 | 0.828125 | 1.1125 | Y | 2 | 13.25 | 3.82934 | 0.819041 | 0.819041 | |
c4_16 | 4 | 16 | 2 | 3.0952 | 0.7738 | 1.03297 | N | 2 | 0.7738 | 4.12401 | 1.11371 | 1.11371 | [Sloane-web], [Karlsson10a], [Karlsson10b], [Alvarado15]. |
l4_17 | 4 | 17 | 34 | 992 | 0.858131 | 1.11733 | Y | 2.04373 | 242.693 | 3.67476 | 0.7584 | 0.839116 | |
c4_17 | 4 | 17 | 3.01674 | 7.37483 | 0.810358 | 1.03857 | N | 2.04373 | 1.80426 | 3.92353 | 1.00717 | 1.08788 | [Sloane-web] |
l4_18 | 4 | 18 | 18 | 287 | 0.885802 | 1.08343 | Y | 2.08496 | 68.8262 | 3.53693 | 0.707314 | 0.864407 | |
c4_18 | 4 | 18 | 2.84243 | 6.81055 | 0.842953 | 1.01533 | N | 2.08496 | 1.63326 | 3.75227 | 0.92265 | 1.07974 | [Sloane-web] |
l4_19 | 4 | 19 | 38 | 1296 | 0.897507 | 1.07562 | Y | 2.12396 | 305.09 | 3.47992 | 0.730793 | 0.960379 | |
c4_19 | 4 | 19 | 2.95266 | 7.56089 | 0.867253 | 1.01542 | N | 2.12396 | 1.7799 | 3.62884 | 0.879715 | 1.1093 | [Sloane-web] |
l4_20 | 4 | 20 | 20 | 367 | 0.9175 | 1.06982 | Y | 2.16096 | 84.9158 | 3.38424 | 0.710115 | 1.00869 | |
c4_20 | 4 | 20 | 4.031 | 14.2059 | 0.874264 | 1.01347 | N | 2.16096 | 3.28693 | 3.59387 | 0.919749 | 1.21833 | [Sloane-web] |
l4_21 | 4 | 21 | 42 | 1644 | 0.931973 | 1.06248 | Y | 2.19616 | 374.29 | 3.31627 | 0.712305 | 1.07671 | |
c4_21 | 4 | 21 | 5.00447 | 22.9244 | 0.91534 | 1.03508 | N | 2.19616 | 5.21921 | 3.39447 | 0.790511 | 1.15492 | [Sloane-web] |
l4_22 | 4 | 22 | 22 | 456 | 0.942149 | 1.05581 | Y | 2.22972 | 102.255 | 3.26911 | 0.731 | 1.15835 | |
c4_22 | 4 | 22 | 3.27298 | 10.084 | 0.941336 | 1.05772 | N | 2.22972 | 2.26127 | 3.27285 | 0.734748 | 1.16209 | [Sloane-web] |
l4_23 | 4 | 23 | 46 | 2012 | 0.950851 | 1.04967 | Y | 2.26178 | 444.782 | 3.22918 | 0.753082 | 1.24073 | |
c4_23 | 4 | 23 | 2.71043 | 6.98534 | 0.950851 | 1.04967 | Y | 2.26178 | 1.54421 | 3.22918 | 0.753082 | 1.24073 | [Sloane-web], [Karlsson10b] |
dicyclic4_24 | 4 | 24 | 0.517638 | 1 | 3.73205 | 1 | N | 2.29248 | 0.218104 | -2.70918 | -5.12672 | -4.58118 | [Zetterberg77, Sec. 8] |
24cell4_24 | 4 | 24 | 2 | 4 | 1 | 1 | Y | 2.29248 | 0.872417 | 3.0103 | 0.592758 | 1.1383 | The vertices of the 24-cell, a regular polytope with 24 faces [Coxeter73], [Zetterberg77], [Biglieri92], [Agrell09], [Bulow09], [Karlsson10b], [Agrell11a]. |
l4_24 | 4 | 24 | 24 | 551 | 0.956597 | 1.04489 | Y | 2.29248 | 120.175 | 3.20301 | 0.785467 | 1.33101 | |
c4_24 | 4 | 24 | 3.63101 | 12.612 | 0.956597 | 1.04489 | Y | 2.29248 | 2.75073 | 3.20301 | 0.785467 | 1.33101 | [Sloane-web], [Karlsson10b] |
doubleprism4_25 | 4 | 25 | 1.17557 | 2 | 1.44721 | 1 | N | 2.32193 | 0.430677 | 1.40497 | -0.957139 | -0.355939 | Independent 5-PSK packings in each pair of dimensions [Zetterberg77, Sec. 8]. |
l4_25 | 4 | 25 | 2 | 3.84 | 0.96 | 1.04167 | Y | 2.32193 | 0.826899 | 3.18759 | 0.825475 | 1.42668 | Equivalent to c4_25 by rotation. |
c4_25 | 4 | 25 | 2 | 3.84 | 0.96 | 1.04167 | Y | 2.32193 | 0.826899 | 3.18759 | 0.825475 | 1.42668 | [Sloane-web] The 24-cell with a central point added [Gilbert52], [Welti74], [Karlsson10b]. The 4-dimensional “kissing” packing, i.e., a central sphere surrounded by the maximum number of touching spheres [Agrell09]. |
l4_26 | 4 | 26 | 26 | 674 | 0.997041 | 1.0691 | Y | 2.35022 | 143.391 | 3.02317 | 0.713653 | 1.36846 | |
c4_26 | 4 | 26 | 1.54652 | 2.38465 | 0.997041 | 1.0691 | Y | 2.35022 | 0.507324 | 3.02317 | 0.713653 | 1.36846 | [Sloane-web], [Karlsson10b] |
l4_27 | 4 | 27 | 54 | 3000 | 1.02881 | 1.08384 | Y | 2.37744 | 630.93 | 2.88696 | 0.627465 | 1.33396 | |
c4_27 | 4 | 27 | 1.44592 | 2.15092 | 1.02881 | 1.08384 | Y | 2.37744 | 0.452361 | 2.88696 | 0.627465 | 1.33396 | [Sloane-web], [Karlsson10b] |
l4_28 | 4 | 28 | 14 | 207 | 1.05612 | 1.0913 | Y | 2.40368 | 43.059 | 2.77316 | 0.561319 | 1.31774 | |
c4_28 | 4 | 28 | 1.68356 | 2.99244 | 1.05577 | 1.05064 | N | 2.40368 | 0.622472 | 2.77461 | 0.562767 | 1.31919 | [Sloane-web] |
l4_29 | 4 | 29 | 58 | 3640 | 1.08205 | 1.09761 | Y | 2.42899 | 749.282 | 2.66785 | 0.501504 | 1.30619 | |
c4_29 | 4 | 29 | 2.9921 | 9.62457 | 1.07505 | 1.06263 | N | 2.42899 | 1.98119 | 2.69601 | 0.529669 | 1.33436 | [Sloane-web] |
l4_30 | 4 | 30 | 30 | 994 | 1.10444 | 1.10001 | Y | 2.45345 | 202.572 | 2.57886 | 0.456025 | 1.30744 | |
c4_30 | 4 | 30 | 2.0821 | 4.73905 | 1.09317 | 1.05298 | N | 2.45345 | 0.965794 | 2.62342 | 0.500586 | 1.352 | [Sloane-web] |
l4_31 | 4 | 31 | 62 | 4320 | 1.12383 | 1.10016 | Y | 2.4771 | 871.988 | 2.5033 | 0.422129 | 1.31882 | |
c4_31 | 4 | 31 | 2.22412 | 5.53018 | 1.11796 | 1.0549 | N | 2.4771 | 1.11626 | 2.52605 | 0.444886 | 1.34158 | [Sloane-web] |
b4_32 | 4 | 32 | 1 | 1.75 | 1.75 | 1.06122 | Y | 2.5 | 0.35 | 0.579919 | -1.46128 | -0.520667 | A subset of the cubic lattice [Biglieri92]. |
voronoi4_32 | 4 | 32 | 8 | 107 | 1.67188 | 1.11704 | Y | 2.5 | 21.4 | 0.778262 | -1.26294 | -0.322324 | A Voronoi code based on the cubic lattice [Forney89b, Table III]. |
SP-QAM4_32 | 4 | 32 | 4 | 20 | 1.25 | 1.16 | Y | 2.5 | 4 | 2.0412 | 0 | 0.940614 | [Coelho11], [Karlsson12]. Two interlaced hypercubes. It has the same γ as one hypercube but twice as many points. Also, the 3rd step when applying SP recursively to QAM4_256. |
l4_32 | 4 | 32 | 32 | 1178 | 1.15039 | 1.10874 | Y | 2.5 | 235.6 | 2.40185 | 0.360647 | 1.30126 | |
c4_32 | 4 | 32 | 2.24119 | 5.6918 | 1.13316 | 1.07558 | N | 2.5 | 1.13836 | 2.46737 | 0.426174 | 1.36679 | [Sloane-web] |
l4_33 | 4 | 33 | 66 | 5112 | 1.17355 | 1.11254 | Y | 2.5222 | 1013.4 | 2.31527 | 0.31246 | 1.29572 | |
l4_34 | 4 | 34 | 34 | 1378 | 1.19204 | 1.11262 | Y | 2.54373 | 270.862 | 2.24739 | 0.281499 | 1.3062 | |
l4_35 | 4 | 35 | 70 | 5952 | 1.21469 | 1.11728 | Y | 2.56464 | 1160.4 | 2.16563 | 0.235298 | 1.30031 | |
l4_36 | 4 | 36 | 36 | 1602 | 1.23611 | 1.12069 | Y | 2.58496 | 309.869 | 2.08972 | 0.193667 | 1.29791 | |
l4_37 | 4 | 37 | 74 | 6880 | 1.25639 | 1.12313 | Y | 2.60473 | 1320.68 | 2.01905 | 0.156072 | 1.29854 | |
l4_38 | 4 | 38 | 38 | 1846 | 1.27839 | 1.12727 | Y | 2.62396 | 351.758 | 1.94365 | 0.112633 | 1.29235 | |
l4_39 | 4 | 39 | 78 | 7872 | 1.29389 | 1.0976 | Y | 2.6427 | 1489.39 | 1.89134 | 0.0912217 | 1.30728 | |
w4_40 | 4 | 40 | 1.41421 | 2.6 | 1.3 | 1.09467 | Y | 2.66096 | 0.488545 | 1.87087 | 0.100657 | 1.35219 | [Welti74] |
l4_40 | 4 | 40 | 2 | 5.2 | 1.3 | 1.09467 | Y | 2.66096 | 0.977089 | 1.87087 | 0.100657 | 1.35219 | |
l4_41 | 4 | 41 | 82 | 8928 | 1.32778 | 1.1053 | Y | 2.67878 | 1666.43 | 1.77904 | 0.0377993 | 1.32397 | |
l4_42 | 4 | 42 | 14 | 265 | 1.35204 | 1.11092 | Y | 2.69616 | 49.144 | 1.7004 | -0.0127434 | 1.30728 | |
l4_43 | 4 | 43 | 86 | 10156 | 1.37317 | 1.11343 | Y | 2.71313 | 1871.64 | 1.63304 | -0.052848 | 1.30028 | |
l4_44 | 4 | 44 | 88 | 10780 | 1.39205 | 1.11449 | Y | 2.72972 | 1974.56 | 1.57377 | -0.0856598 | 1.29984 | |
l4_45 | 4 | 45 | 90 | 11408 | 1.4084 | 1.11432 | Y | 2.74593 | 2077.26 | 1.52306 | -0.110656 | 1.30654 | |
l4_46 | 4 | 46 | 46 | 3010 | 1.4225 | 1.11355 | Y | 2.76178 | 544.938 | 1.47979 | -0.128916 | 1.31931 | |
l4_47 | 4 | 47 | 94 | 12720 | 1.43957 | 1.11477 | Y | 2.77729 | 2290. | 1.42799 | -0.156395 | 1.32223 | |
48cell4_48 | 4 | 48 | 1.53073 | 4 | 1.70711 | 1 | N | 2.79248 | 0.716209 | 0.687693 | -0.873004 | 0.635411 | The union of the 24-cell and its dual [Zetterberg77], [Biglieri92]. |
w4_48 | 4 | 48 | 2.82843 | 11.6667 | 1.45833 | 1.11429 | Y | 2.79248 | 2.08894 | 1.37173 | -0.188965 | 1.31945 | [Welti74] |
l4_48 | 4 | 48 | 48 | 3354 | 1.45573 | 1.11557 | Y | 2.79248 | 600.541 | 1.37949 | -0.181203 | 1.32721 | |
doubleprism4_49 | 4 | 49 | 0.867767 | 2 | 2.65597 | 1 | N | 2.80735 | 0.356207 | -1.23193 | -2.76956 | -1.23193 | Independent 7-PSK packings in each pair of dimensions [Zetterberg77, Sec. 8]. |
w4_49 | 4 | 49 | 1.41421 | 2.93878 | 1.46939 | 1.13426 | Y | 2.80735 | 0.523406 | 1.33894 | -0.198691 | 1.33894 | [Welti74] |
l4_49 | 4 | 49 | 2 | 5.87755 | 1.46939 | 1.13426 | Y | 2.80735 | 1.04681 | 1.33894 | -0.198691 | 1.33894 | |
l4_50 | 4 | 50 | 50 | 3718 | 1.4872 | 1.11718 | Y | 2.82193 | 658.769 | 1.28661 | -0.228534 | 1.33774 | |
l4_51 | 4 | 51 | 102 | 15632 | 1.5025 | 1.1179 | Y | 2.83621 | 2755.79 | 1.24216 | -0.251054 | 1.34334 | |
w4_52 | 4 | 52 | 2.82843 | 12.2308 | 1.52885 | 1.12768 | Y | 2.85022 | 2.14558 | 1.16666 | -0.305154 | 1.31684 | This packing, suggested in [Welti74], does not have zero mean and can be improved by translation. |
l4_52 | 4 | 52 | 52 | 4102 | 1.51701 | 1.11827 | Y | 2.85022 | 719.594 | 1.20041 | -0.271406 | 1.35058 | |
l4_53 | 4 | 53 | 106 | 17220 | 1.53257 | 1.11608 | Y | 2.86396 | 3006.33 | 1.15609 | -0.294844 | 1.35425 | |
l4_54 | 4 | 54 | 54 | 4509 | 1.5463 | 1.11603 | Y | 2.87744 | 783.508 | 1.11737 | -0.313159 | 1.36255 | |
l4_55 | 4 | 55 | 110 | 18856 | 1.55835 | 1.11546 | Y | 2.89068 | 3261.52 | 1.08366 | -0.326942 | 1.37492 | |
l4_56 | 4 | 56 | 112 | 19732 | 1.57302 | 1.11597 | Y | 2.90368 | 3397.76 | 1.04295 | -0.348167 | 1.37941 | |
l4_57 | 4 | 57 | 114 | 20612 | 1.58603 | 1.11573 | Y | 2.91645 | 3533.75 | 1.0072 | -0.364866 | 1.38799 | |
l4_58 | 4 | 58 | 58 | 5381 | 1.59958 | 1.11583 | Y | 2.92899 | 918.576 | 0.97023 | -0.38319 | 1.39452 | |
l4_59 | 4 | 59 | 118 | 22464 | 1.61333 | 1.11607 | Y | 2.94132 | 3818.69 | 0.933069 | -0.402106 | 1.40007 | |
l4_60 | 4 | 60 | 120 | 23436 | 1.6275 | 1.11653 | Y | 2.95345 | 3967.57 | 0.89509 | -0.422221 | 1.40402 | |
l4_61 | 4 | 61 | 122 | 24412 | 1.64015 | 1.11635 | Y | 2.96537 | 4116.18 | 0.861463 | -0.43835 | 1.41158 | |
l4_62 | 4 | 62 | 124 | 25436 | 1.65427 | 1.11689 | Y | 2.9771 | 4271.95 | 0.824245 | -0.458423 | 1.41483 | |
l4_63 | 4 | 63 | 126 | 26464 | 1.66692 | 1.11675 | Y | 2.98864 | 4427.43 | 0.791156 | -0.474708 | 1.42152 | |
b4_64 | 4 | 64 | 1 | 2.375 | 2.375 | 1.08587 | Y | 3 | 0.395833 | -0.746336 | -1.99572 | -0.0768683 | A subset of the cubic lattice [Biglieri92]. |
w4_64 | 4 | 64 | 2 | 6.75 | 1.6875 | 1.11934 | Y | 3 | 1.125 | 0.737862 | -0.511525 | 1.40733 | [Welti74], [Biglieri92] |
l4_64 | 4 | 64 | 64 | 6874 | 1.67822 | 1.11616 | Y | 3 | 1145.67 | 0.761804 | -0.487583 | 1.43127 | |
l4_65 | 4 | 65 | 130 | 28616 | 1.69325 | 1.11718 | Y | 3.01118 | 4751.62 | 0.723078 | -0.510149 | 1.431 | |
l4_66 | 4 | 66 | 66 | 7433 | 1.70638 | 1.11727 | Y | 3.0222 | 1229.73 | 0.689537 | -0.527835 | 1.43529 | |
l4_67 | 4 | 67 | 134 | 30844 | 1.71775 | 1.11668 | Y | 3.03304 | 5084.66 | 0.660689 | -0.541123 | 1.44366 | |
w4_68 | 4 | 68 | 2.82843 | 13.8235 | 1.72794 | 1.11589 | Y | 3.04373 | 2.27082 | 0.63501 | -0.551526 | 1.45461 | [Welti74] |
l4_68 | 4 | 68 | 4 | 27.6471 | 1.72794 | 1.11589 | Y | 3.04373 | 4.54164 | 0.63501 | -0.551526 | 1.45461 | |
l4_69 | 4 | 69 | 6 | 62.6087 | 1.73913 | 1.11486 | Y | 3.05426 | 10.2494 | 0.606978 | -0.564558 | 1.46263 | |
l4_70 | 4 | 70 | 70 | 8584 | 1.75184 | 1.11522 | Y | 3.06464 | 1400.49 | 0.575364 | -0.581439 | 1.46652 | |
l4_71 | 4 | 71 | 142 | 35584 | 1.76473 | 1.11567 | Y | 3.07487 | 5786.25 | 0.543519 | -0.598808 | 1.46964 | |
l4_72 | 4 | 72 | 6 | 64 | 1.77778 | 1.11621 | Y | 3.08496 | 10.3729 | 0.511525 | -0.616576 | 1.47209 | |
l4_73 | 4 | 73 | 146 | 38240 | 1.79396 | 1.11831 | Y | 3.09491 | 6177.88 | 0.472178 | -0.641938 | 1.46668 | |
l4_74 | 4 | 74 | 74 | 9898 | 1.80752 | 1.11883 | Y | 3.10473 | 1594.02 | 0.43946 | -0.660906 | 1.46741 | |
l4_75 | 4 | 75 | 150 | 40996 | 1.82204 | 1.12 | Y | 3.11441 | 6581.67 | 0.40471 | -0.682133 | 1.46563 | |
l4_76 | 4 | 76 | 76 | 10601 | 1.83535 | 1.12011 | Y | 3.12396 | 1696.72 | 0.373103 | -0.700437 | 1.46652 | |
l4_77 | 4 | 77 | 154 | 43828 | 1.84804 | 1.12052 | Y | 3.13339 | 6993.7 | 0.343198 | -0.717253 | 1.46867 | |
l4_78 | 4 | 78 | 78 | 11313 | 1.85947 | 1.12005 | Y | 3.1427 | 1799.88 | 0.316414 | -0.731155 | 1.4735 | |
l4_79 | 4 | 79 | 158 | 46732 | 1.87198 | 1.12037 | Y | 3.15189 | 7413.33 | 0.287298 | -0.747591 | 1.47556 | |
l4_80 | 4 | 80 | 80 | 12058 | 1.88406 | 1.11959 | Y | 3.16096 | 1907.33 | 0.259347 | -0.763057 | 1.47838 | |
l4_81 | 4 | 81 | 162 | 49712 | 1.89422 | 1.11895 | Y | 3.16993 | 7841.19 | 0.235988 | -0.774122 | 1.48538 | |
l4_82 | 4 | 82 | 82 | 12802 | 1.90393 | 1.11821 | Y | 3.17878 | 2013.67 | 0.213799 | -0.784202 | 1.49315 | |
l4_83 | 4 | 83 | 166 | 52752 | 1.91436 | 1.11763 | Y | 3.18752 | 8274.77 | 0.190072 | -0.795999 | 1.499 | |
l4_84 | 4 | 84 | 168 | 54300 | 1.92389 | 1.1168 | Y | 3.19616 | 8494.57 | 0.168487 | -0.805829 | 1.50662 | |
l4_85 | 4 | 85 | 170 | 55852 | 1.9326 | 1.11581 | Y | 3.2047 | 8714.09 | 0.148891 | -0.813841 | 1.51586 | |
l4_86 | 4 | 86 | 86 | 14353 | 1.94064 | 1.11474 | Y | 3.21313 | 2233.49 | 0.130842 | -0.820472 | 1.52628 | |
l4_87 | 4 | 87 | 174 | 58976 | 1.94795 | 1.11362 | Y | 3.22147 | 9153.58 | 0.114532 | -0.825525 | 1.5381 | |
w4_88 | 4 | 88 | 1.41421 | 3.90909 | 1.95455 | 1.11249 | Y | 3.22972 | 0.605176 | 0.0998422 | -0.829115 | 1.5512 | [Welti74] |
l4_88 | 4 | 88 | 2 | 7.81818 | 1.95455 | 1.11249 | Y | 3.22972 | 1.21035 | 0.0998422 | -0.829115 | 1.5512 | |
l4_89 | 4 | 89 | 178 | 62464 | 1.97147 | 1.1157 | Y | 3.23787 | 9645.86 | 0.0624021 | -0.855608 | 1.54122 | |
l4_90 | 4 | 90 | 90 | 16097 | 1.98728 | 1.11797 | Y | 3.24593 | 2479.57 | 0.0277007 | -0.879512 | 1.53364 | |
l4_91 | 4 | 91 | 182 | 66316 | 2.00205 | 1.11952 | Y | 3.2539 | 10190.2 | -0.00445551 | -0.901017 | 1.5283 | |
w4_92 | 4 | 92 | 2.82843 | 16.2174 | 2.02717 | 1.12397 | Y | 3.26178 | 2.48597 | -0.0586101 | -0.944662 | 1.50065 | [Welti74] |
l4_92 | 4 | 92 | 92 | 17062 | 2.01583 | 1.12048 | Y | 3.26178 | 2615.44 | -0.0342429 | -0.920295 | 1.52502 | |
l4_93 | 4 | 93 | 186 | 70220 | 2.02971 | 1.1216 | Y | 3.26958 | 10738.4 | -0.0640494 | -0.93973 | 1.52141 | |
l4_94 | 4 | 94 | 94 | 18046 | 2.04233 | 1.12202 | Y | 3.27729 | 2753.19 | -0.0909525 | -0.956398 | 1.52041 | |
l4_95 | 4 | 95 | 190 | 74176 | 2.05474 | 1.12245 | Y | 3.28493 | 11290.4 | -0.117262 | -0.972604 | 1.51971 | |
l4_96 | 4 | 96 | 96 | 19050 | 2.06706 | 1.12291 | Y | 3.29248 | 2892.95 | -0.143225 | -0.988592 | 1.51908 | |
l4_97 | 4 | 97 | 194 | 78252 | 2.07918 | 1.12329 | Y | 3.29996 | 11856.5 | -0.16862 | -1.00414 | 1.51874 | |
l4_98 | 4 | 98 | 98 | 20081 | 2.0909 | 1.12351 | Y | 3.30735 | 3035.81 | -0.193032 | -1.01882 | 1.51911 | |
l4_99 | 4 | 99 | 198 | 82400 | 2.10183 | 1.12348 | Y | 3.31468 | 12429.6 | -0.215668 | -1.03185 | 1.52099 | |
l4_100 | 4 | 100 | 100 | 21126 | 2.1126 | 1.12345 | Y | 3.32193 | 3179.78 | -0.237873 | -1.04457 | 1.52304 | |
l4_101 | 4 | 101 | 202 | 86656 | 2.12371 | 1.12359 | Y | 3.32911 | 13014.9 | -0.260659 | -1.05798 | 1.52425 | |
l4_102 | 4 | 102 | 34 | 2467.67 | 2.13466 | 1.12369 | Y | 3.33621 | 369.831 | -0.282987 | -1.07105 | 1.52568 | |
l4_103 | 4 | 103 | 206 | 91040 | 2.14535 | 1.12371 | Y | 3.34325 | 13615.5 | -0.304678 | -1.08359 | 1.52749 | |
l4_104 | 4 | 104 | 26 | 1457 | 2.15533 | 1.12352 | Y | 3.35022 | 217.448 | -0.324829 | -1.0947 | 1.53061 | |
l4_105 | 4 | 105 | 210 | 95536 | 2.16635 | 1.12374 | Y | 3.35712 | 14228.9 | -0.346985 | -1.10791 | 1.53149 | |
l4_106 | 4 | 106 | 106 | 24458 | 2.17675 | 1.12372 | Y | 3.36396 | 3635.3 | -0.367792 | -1.11988 | 1.53348 | |
l4_107 | 4 | 107 | 214 | 100128 | 2.18639 | 1.12321 | Y | 3.37073 | 14852.6 | -0.38698 | -1.13034 | 1.53687 | |
l4_108 | 4 | 108 | 54 | 6404 | 2.19616 | 1.12322 | Y | 3.37744 | 948.054 | -0.406338 | -1.14106 | 1.53987 | |
l4_109 | 4 | 109 | 218 | 104896 | 2.20722 | 1.12353 | Y | 3.38409 | 15498.4 | -0.428159 | -1.15434 | 1.54019 | |
l4_110 | 4 | 110 | 110 | 26833 | 2.2176 | 1.12358 | Y | 3.39068 | 3956.88 | -0.448539 | -1.16627 | 1.54174 | |
l4_111 | 4 | 111 | 222 | 109792 | 2.22774 | 1.12357 | Y | 3.39721 | 16159.2 | -0.468348 | -1.17773 | 1.54364 | |
l4_112 | 4 | 112 | 112 | 28070 | 2.23772 | 1.12352 | Y | 3.40368 | 4123.48 | -0.487764 | -1.18888 | 1.54574 | |
l4_113 | 4 | 113 | 226 | 114792 | 2.24747 | 1.12163 | Y | 3.41009 | 16831.2 | -0.506647 | -1.19959 | 1.54817 | |
l4_114 | 4 | 114 | 114 | 29314 | 2.25562 | 1.12107 | Y | 3.41645 | 4290.13 | -0.522354 | -1.20721 | 1.55358 | |
l4_115 | 4 | 115 | 46 | 4790.4 | 2.26389 | 1.12033 | Y | 3.42275 | 699.789 | -0.538261 | -1.21512 | 1.55859 | |
l4_116 | 4 | 116 | 116 | 30611 | 2.2749 | 1.12112 | Y | 3.42899 | 4463.56 | -0.559315 | -1.22825 | 1.55826 | |
l4_117 | 4 | 117 | 234 | 125132 | 2.28527 | 1.12161 | Y | 3.43518 | 18213.3 | -0.579067 | -1.24017 | 1.55906 | |
l4_118 | 4 | 118 | 236 | 127812 | 2.29481 | 1.12212 | Y | 3.44132 | 18570.2 | -0.597176 | -1.25052 | 1.5613 | |
l4_119 | 4 | 119 | 238 | 130464 | 2.30323 | 1.12192 | Y | 3.44741 | 18922. | -0.613068 | -1.25874 | 1.56559 | |
600cell4_120 | 4 | 120 | 1.23607 | 4 | 2.61803 | 1 | N | 3.45345 | 0.579132 | -1.16945 | -1.80753 | 1.02921 | The vertices of the 600-cell, a regular polytope with 600 faces [Coxeter73], [Zetterberg77], [Biglieri92], [Agrell11a]. |
l4_120 | 4 | 120 | 6 | 83.2 | 2.31111 | 1.1216 | Y | 3.45345 | 12.0459 | -0.627908 | -1.26598 | 1.57075 | |
doubleprism4_121 | 4 | 121 | 0.563465 | 2 | 6.29935 | 1 | N | 3.45943 | 0.289065 | -4.98266 | -5.61321 | -2.76417 | Independent 11-PSK packings in each pair of dimensions [Zetterberg77, Sec. 8]. |
l4_121 | 4 | 121 | 242 | 135936 | 2.32115 | 1.12163 | Y | 3.45943 | 19647.2 | -0.646738 | -1.27729 | 1.57175 | |
l4_122 | 4 | 122 | 244 | 138924 | 2.33345 | 1.12258 | Y | 3.46537 | 20044.6 | -0.669676 | -1.29278 | 1.56847 | |
l4_123 | 4 | 123 | 82 | 15757.3 | 2.34345 | 1.11963 | Y | 3.47126 | 2269.69 | -0.68825 | -1.30398 | 1.56938 | |
l4_124 | 4 | 124 | 62 | 9042 | 2.35224 | 1.11825 | Y | 3.4771 | 1300.22 | -0.704511 | -1.31294 | 1.57244 | |
l4_125 | 4 | 125 | 250 | 147552 | 2.36083 | 1.11834 | Y | 3.48289 | 21182.4 | -0.720351 | -1.32155 | 1.57576 | |
l4_126 | 4 | 126 | 126 | 37617 | 2.36943 | 1.1174 | Y | 3.48864 | 5391.36 | -0.736131 | -1.33017 | 1.57898 | |
l4_127 | 4 | 127 | 254 | 153408 | 2.37783 | 1.11693 | Y | 3.49434 | 21950.9 | -0.751506 | -1.33845 | 1.58244 | |
SP-QAM4_128 | 4 | 128 | 2.82843 | 20 | 2.5 | 1.16 | Y | 3.5 | 2.85714 | -0.9691 | -1.54902 | 1.38354 | QAM4_256 with a single-parity check constraint [Coelho11], [Karlsson12]. |
l4_128 | 4 | 128 | 128 | 39089 | 2.3858 | 1.11418 | Y | 3.5 | 5584.14 | -0.766046 | -1.34597 | 1.58659 | |
w4_145 | 4 | 145 | 1.41421 | 4.96552 | 2.48276 | 1.10093 | Y | 3.58995 | 0.691585 | -0.939045 | -1.40876 | 1.70976 | [Welti74] |
w4_152 | 4 | 152 | 1.41421 | 5.21053 | 2.60526 | 1.12244 | Y | 3.62396 | 0.718899 | -1.14822 | -1.57698 | 1.61212 | Characterized in [Welti74], Table IV, where it was incorrectly labeled M=164. |
w4_169 | 4 | 169 | 1.41421 | 5.39645 | 2.69822 | 1.11184 | Y | 3.70044 | 0.729163 | -1.30048 | -1.63855 | 1.70982 | [Welti74] |
w4_193 | 4 | 193 | 2.82843 | 23.5078 | 2.93847 | 1.12288 | Y | 3.79623 | 3.0962 | -1.67091 | -1.89799 | 1.65093 | This packing, suggested in [Welti74], does not have zero mean and can be improved by translation. |
w4_200 | 4 | 200 | 2 | 11.96 | 2.99 | 1.12219 | Y | 3.82193 | 1.56466 | -1.74641 | -1.94419 | 1.65874 | [Welti74] |
w4_212 | 4 | 212 | 2.82843 | 24.7358 | 3.09198 | 1.12484 | Y | 3.86396 | 3.20084 | -1.89207 | -2.04234 | 1.64909 | [Welti74] |
QAM4_256 | 4 | 256 | 2 | 20 | 5 | 1.16 | Y | 4 | 2.5 | -3.9794 | -3.9794 | 0 | [Alvarado15]. The Cartesian product of two 16-QAM or four 4-PAM packings. Also known as PM-16QAM. |
voronoi4_256 | 4 | 256 | 45.2548 | 7042 | 3.43848 | 1.135 | Y | 4 | 880.25 | -2.35336 | -2.35336 | 1.62604 | Conjectured in [Conway83], [Forney89b] to be the best Voronoi code. |
w4_256 | 4 | 256 | 1 | 3.375 | 3.375 | 1.11934 | Y | 4 | 0.421875 | -2.27244 | -2.27244 | 1.70696 | As defined in [Welti74], not rotated or rescaled. |
a4_256 | 4 | 256 | 1.41421 | 6.75 | 3.375 | 1.11934 | Y | 4 | 0.84375 | -2.27244 | -2.27244 | 1.70696 | Integer coordinates with odd parity [Conway83], [Alvarado15], [Eriksson15]. Equivalent to w4_256 by rotation. |
ab4_256 | 4 | 256 | 2.82843 | 27 | 3.375 | 1.11934 | Y | 4 | 3.375 | -2.27244 | -2.27244 | 1.70696 | Odd integer coordinates [Eriksson15]. Equivalent to w4_256 by rotation. |
w4_268 | 4 | 268 | 2.82843 | 27.7164 | 3.46455 | 1.12243 | Y | 4.03304 | 3.43617 | -2.38617 | -2.35044 | 1.69925 | [Welti74] |
w4_313 | 4 | 313 | 1.41421 | 7.51438 | 3.75719 | 1.12438 | Y | 4.14501 | 0.906437 | -2.73833 | -2.58367 | 1.70519 | [Welti74] |
w4_360 | 4 | 360 | 2.82843 | 32.1556 | 4.01944 | 1.12422 | Y | 4.24593 | 3.78664 | -3.03136 | -2.77224 | 1.73349 | [Welti74] |
w4_409 | 4 | 409 | 1.41421 | 8.56724 | 4.28362 | 1.12247 | Y | 4.33798 | 0.987469 | -3.30781 | -2.95553 | 1.74906 | [Welti74] |
w4_414 | 4 | 414 | 2 | 17.2705 | 4.31763 | 1.12492 | Y | 4.34674 | 1.98661 | -3.34216 | -2.98112 | 1.74246 | [Welti74] |
w4_432 | 4 | 432 | 2.82843 | 35.2963 | 4.41204 | 1.1255 | Y | 4.37744 | 4.03161 | -3.43609 | -3.04449 | 1.74567 | [Welti74] |
w4_464 | 4 | 464 | 1.41421 | 9.13793 | 4.56897 | 1.12531 | Y | 4.42899 | 1.0316 | -3.58788 | -3.14543 | 1.75675 | [Welti74] |
w4_494 | 4 | 494 | 2 | 18.8462 | 4.71154 | 1.12409 | Y | 4.47418 | 2.1061 | -3.72133 | -3.23479 | 1.76586 | [Welti74] |
w4_504 | 4 | 504 | 2.82843 | 38.1111 | 4.76389 | 1.125 | Y | 4.48864 | 4.24528 | -3.76932 | -3.26877 | 1.76343 | [Welti74] |
cross4_512 | 4 | 512 | 2 | 28 | 7 | 1.14286 | Y | 4.5 | 3.11111 | -5.44068 | -4.92916 | 0.127854 | A cross-shaped subset of the cubic lattice [Forney84, Sec. IV-C], [Forney89a]. |
sphere4_512 | 4 | 512 | 2 | 27 | 6.75 | 1.11934 | Y | 4.5 | 3 | -5.28274 | -4.77121 | 0.285796 | A spherical subset of the cubic lattice [Calderbank90]. |
SP-QAM4_512 | 4 | 512 | 4 | 84 | 5.25 | 1.19048 | Y | 4.5 | 9.33333 | -4.19129 | -3.67977 | 1.37724 | [Karlsson12]. Two interlaced QAM4_256 packings. Also, the 3rd step when applying SP recursively to QAM4_4096. |
SP-cross4_512 | 4 | 512 | 2.82843 | 40 | 5 | 1.155 | Y | 4.5 | 4.44444 | -3.9794 | -3.46787 | 1.58913 | A single parity applied to the Cartesian product of two cross2_32 packings [Fischer14]. |
a4_512 | 4 | 512 | 1024 | 5015956 | 4.78359 | 1.12198 | Y | 4.5 | 557328. | -3.78724 | -3.27571 | 1.7813 | There are two conjectured optimal 512-point packings, which are geometrically inequivalent, a4_512 and ab4_512 [Agrell14]. |
ab4_512 | 4 | 512 | 1024 | 5015956 | 4.78359 | 1.12198 | Y | 4.5 | 557328. | -3.78724 | -3.27571 | 1.7813 | See a4_512 [Agrell14]. |
120cell4_600 | 4 | 600 | 0.763932 | 8 | 13.7082 | 1 | N | 4.61441 | 0.86685 | -8.35951 | -7.73894 | -2.43128 | The vertices of the 120-cell, a regular polytope with 120 faces [Coxeter73], [Zetterberg77]. Similarly to the dodecahedron in 3 dimensions, it is very weak as a sphere packing [Agrell11a]. |
w4_601 | 4 | 601 | 1.41421 | 10.3028 | 5.15141 | 1.11808 | Y | 4.61561 | 1.11609 | -4.10896 | -3.48727 | 1.82303 | [Welti74] |
w4_656 | 4 | 656 | 1.41421 | 10.8537 | 5.42683 | 1.12322 | Y | 4.67878 | 1.15988 | -4.33516 | -3.65444 | 1.79488 | [Welti74] |
w4_668 | 4 | 668 | 2.82843 | 43.8623 | 5.48278 | 1.12451 | Y | 4.69185 | 4.6743 | -4.37971 | -3.68687 | 1.79129 | [Welti74] |
w4_688 | 4 | 688 | 2.82843 | 44.5233 | 5.56541 | 1.12506 | Y | 4.71313 | 4.72332 | -4.44467 | -3.73217 | 1.79295 | This packing, suggested in [Welti74], does not have zero mean and can be improved by translation. |
w4_714 | 4 | 714 | 2 | 22.6919 | 5.67297 | 1.12535 | Y | 4.73989 | 2.39371 | -4.5278 | -3.79072 | 1.79352 | [Welti74] |
w4_736 | 4 | 736 | 2.82843 | 46 | 5.75 | 1.12396 | Y | 4.76178 | 4.83013 | -4.58638 | -3.82928 | 1.80339 | [Welti74] |
w4_800 | 4 | 800 | 1.41421 | 11.96 | 5.98 | 1.12219 | Y | 4.82193 | 1.24017 | -4.75671 | -3.9451 | 1.8209 | [Welti74] |
a4_1024 | 4 | 1024 | 128 | 111150 | 6.78406 | 1.12437 | Y | 5 | 11115 | -5.3046 | -4.3355 | 1.82751 | [Agrell14] |
cross4_2048 | 4 | 2048 | 2 | 57 | 14.25 | 1.14866 | Y | 5.5 | 5.18182 | -8.52785 | -7.14482 | 0.150246 | A cross-shaped subset of the cubic lattice [Forney84, Sec. IV-C], [Forney89a]. |
SP-QAM4_2048 | 4 | 2048 | 2.82843 | 84 | 10.5 | 1.19048 | Y | 5.5 | 7.63636 | -7.20159 | -5.81857 | 1.4765 | |
a4_2048 | 4 | 2048 | 2048 | 40243818 | 9.59487 | 1.12427 | Y | 5.5 | 3658529. | -6.81009 | -5.42707 | 1.868 | [Agrell14] |
QAM4_4096 | 4 | 4096 | 2 | 84 | 21 | 1.19048 | Y | 6 | 7 | -10.2119 | -8.45098 | 0 | The Cartesian product of two 64-QAM or four 8-PAM packings [Alvarado15]. Also known as PM-64QAM. |
a4_4096 | 4 | 4096 | 4096 | 227723820 | 13.5734 | 1.12458 | Y | 6 | 18976985 | -8.31659 | -6.55567 | 1.89531 | [Agrell14], [Alvarado15] |
w4_5698 | 4 | 5698 | 2 | 64.0706 | 16.0176 | 1.12496 | Y | 6.23812 | 5.13541 | -9.03568 | -7.10575 | 1.9035 | [Welti74] |
a4_8192 | 4 | 8192 | 11585.2 | 2577572980 | 19.2044 | 1.12492 | Y | 6.5 | 198274845. | -9.82371 | -7.71518 | 1.91348 | [Agrell14] |
a4_16384 | 4 | 16384 | 23170.5 | 14578809262 | 27.1551 | 1.12482 | Y | 7 | 1041343519. | -11.3282 | -8.89784 | 1.9283 | [Agrell14] |
a4_32768 | 4 | 32768 | 46341. | 82485284706 | 38.4102 | 1.12493 | Y | 7.5 | 5499018980. | -12.8342 | -10.1042 | 1.93751 | [Agrell14] |
a4_65536 | 4 | 65536 | 23170.5 | 29163327542 | 54.3209 | 1.12494 | Y | 8 | 1822707971. | -14.3394 | -11.3291 | 1.94452 | [Agrell14] |
References
- [Agrell14]
- E. Agrell, unpublished, 2014–2023.
- [Sloane-web]
- http://neilsloane.com/cluster (previously http://www2.research.att.com/~njas/cluster/), accessed April 2010.